Function Repository Resource:

# SequenceToProduct

Turn a sequence of expressions into a symbolic product

Contributed by: Wolfram|Alpha Math Team
 ResourceFunction["SequenceToProduct"][{e1,e2,…},n] attempts to return an inactive product representing e1×e2×… where the user-supplied variable n is used in forming the generic term.

## Details

If successful, ResourceFunction["SequenceToProduct"] returns an expression with head . Using Activate on this output will attempt to evaluate the product.
ResourceFunction["SequenceToProduct"] gives special treatment to the global symbol …, representing a sequence of ellided expressions. The ellipsis symbol … can be input with the keyboard shortcut .

## Examples

### Basic Examples (10)

Convert a simple finite sequence to a product:

 In[1]:=
 Out[1]=

Convert an elided sequence to a product:

 In[2]:=
 Out[2]=

Evaluate with Activate:

 In[3]:=
 Out[3]=

Convert an infinite sequence to a product:

 In[4]:=
 Out[4]=

Convert an geometric sequence to a product:

 In[5]:=
 Out[5]=

Convert another geometric sequence to a product and evaluate:

 In[6]:=
 Out[6]=
 In[7]:=
 Out[7]=

Convert an arithmetic sequence to a product:

 In[8]:=
 Out[8]=

Convert another arithmetic sequence to a product and evaluate:

 In[9]:=
 Out[9]=
 In[10]:=
 Out[10]=

Convert an alternating sequence to a product and evaluate:

 In[11]:=
 Out[11]=
 In[12]:=
 Out[12]=

Convert a rational sequence to a product:

 In[13]:=
 Out[13]=

Convert a hypergeometric sequence to a product:

 In[14]:=
 Out[14]=
 In[15]:=
 Out[15]=

### Scope (1)

The ellipsis symbol (…) can appear anywhere within the input sequence:

 In[16]:=
 Out[16]=
 In[17]:=
 Out[17]=

### Properties and Relations (3)

If successful, SequenceToProduct returns an expression with head :

 In[18]:=
 Out[18]=
 In[19]:=
 Out[19]=

If unable to infer the elided part of a sequence, SequenceToProduct will return unevaluated:

 In[20]:=
 Out[20]=

SequenceToProduct uses FindSequenceFunction to recognize patterns in the input sequence:

 In[21]:=
 Out[22]=
 In[23]:=
 Out[23]=
 In[24]:=
 Out[25]=
 In[26]:=
 Out[26]=

## Publisher

Wolfram|Alpha Math Team

## Version History

• 3.0.0 – 23 March 2023
• 2.1.0 – 20 May 2021
• 2.0.0 – 24 January 2020
• 1.0.0 – 16 October 2019