Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Numerically estimate the limit of a sequence of values
ResourceFunction["SequenceLimit"][{n1,n2,…}] estimates the limit of the numerical sequence ni. |
"WynnEpsilon" | top-level implementation of the Wynn epsilon algorithm |
"NSequenceLimit" | built-in implementation of the Wynn epsilon algorithm from NumericalMath` |
"BrezinskiTheta" | Brezinski's theta algorithm |
"Euler" | Euler transformation |
Automatic | chooses the method depending on the precision and length of the sequence |
Build a sequence approximating Pi:
In[1]:= |
|
Out[1]= |
|
In[2]:= |
|
Out[2]= |
|
Find an approximation of the limit of the sequence:
In[3]:= |
|
Out[3]= |
|
The approximation is much closer to the limit than the last term of the sequence:
In[4]:= |
|
Out[4]= |
|
Symbolic sequences:
In[5]:= |
|
Out[5]= |
|
Rational sequences:
In[6]:= |
|
Out[6]= |
|
In[7]:= |
|
Out[7]= |
|
In[8]:= |
|
Out[8]= |
|
Real-valued sequences:
In[9]:= |
|
Out[9]= |
|
Complex-valued sequences:
In[10]:= |
|
Out[10]= |
|
In[11]:= |
|
Out[11]= |
|
Use the top-level implementation of the Wynn epsilon method:
In[12]:= |
|
Out[12]= |
|
The top-level "WynnEpsilon" method can be more accurate:
In[13]:= |
|
In[14]:= |
|
In[15]:= |
|
Out[15]= |
|
Generate partial sums of the Basel series:
In[16]:= |
|
Out[16]= |
|
With the default settings, "WynnEpsilon" does not give a good result:
In[17]:= |
|
Out[17]= |
|
Adjust the parameter of the transformation to give a better result:
In[18]:= |
|
Out[18]= |
|
In[19]:= |
|
Out[19]= |
|
Plot the relative accuracy of the transformation for various values of the parameter:
In[20]:= |
|
Out[20]= |
|
Use the built-in implementation of the Wynn epsilon method:
In[21]:= |
|
Out[21]= |
|
Find approximations of the limit of a sequence using different Wynn degrees:
In[22]:= |
|
In[23]:= |
|
Out[23]= |
|
In[24]:= |
|
Out[24]= |
|
Compare the errors:
In[25]:= |
|
Out[25]= |
|
In[26]:= |
|
Out[26]= |
|
The built-in "NSequenceLimit" method can be faster than the top-level implementation:
In[27]:= |
|
In[28]:= |
|
Out[28]= |
|
Partial sums of the :
In[29]:= |
|
Out[29]= |
|
Apply Brezinski's ϑ-algorithm to accelerate the convergence:
In[30]:= |
|
Out[30]= |
|
Compare with the exact result:
In[31]:= |
|
Out[31]= |
|
Partial sums of a Dirichlet series:
In[32]:= |
|
Out[32]= |
|
The Euler transformation gives better results than the default:
In[33]:= |
|
Out[33]= |
|
In[34]:= |
|
Out[34]= |
|
In[35]:= |
|
Out[35]= |
|
Partial sums of an alternating series:
In[36]:= |
|
Out[36]= |
|
Apply the Euler transformation:
In[37]:= |
|
Out[37]= |
|
Apply the Euler transformation with a different setting of the fixed ratio:
In[38]:= |
|
Out[38]= |
|
Compare both results with the exact result:
In[39]:= |
|
Out[39]= |
|
Applying SequenceLimit to the partial sums of a power series gives the same result as PadeApproximant:
In[40]:= |
|
In[41]:= |
|
Out[41]= |
|
In[42]:= |
|
Out[42]= |
|
In[43]:= |
|
Out[43]= |
|
SequenceLimit can be used to compute limits, just like NLimit from NumericalCalculus`:
In[44]:= |
|
Out[44]= |
|
In[45]:= |
|
Out[45]= |
|
In[46]:= |
|
In[47]:= |
|
Out[47]= |
|
SequenceLimit can encounter numerical errors:
In[48]:= |
|
Out[48]= |
|
In[49]:= |
|
Out[49]= |
|
Sometimes the errors can be avoided by numerically disturbing the sequence or changing its precision:
In[50]:= |
|
Out[50]= |
|
In[51]:= |
|
Out[51]= |
|
SequenceLimit can give unexpected results for divergent sequences:
In[52]:= |
|
Out[52]= |
|
In[53]:= |
|
Out[53]= |
|
In[54]:= |
|
Out[54]= |
|
This work is licensed under a Creative Commons Attribution 4.0 International License