Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Make a Saunders plot of a function
ResourceFunction["SaundersDigitPlot"][f,b,k,{x,xmin,xmax},{y,ymin,ymax}] makes a Saunders plot of the kth base‐b digit of f as a function of x and y. | |
ResourceFunction["SaundersDigitPlot"][f,b,k,{x,y}∈reg] takes the variables {x,y} to be in the geometric region reg. |
A Saunders plot of a function's first base-10 digit to the right of the decimal point:
In[1]:= |
Out[1]= |
Visualize the third binary digit:
In[2]:= |
Out[2]= |
Use a different color scheme and legend:
In[3]:= |
Out[3]= |
Use a non-integer base:
In[4]:= |
Out[4]= |
Use PlotPoints and MaxRecursion to control adaptive sampling:
In[5]:= |
Out[5]= |
The domain may be specified by a region:
In[6]:= |
Out[6]= |
Explicitly specify a color function:
In[7]:= |
Out[7]= |
Use an indexed color:
In[8]:= |
Out[8]= |
Use a named color gradient:
In[9]:= |
Out[9]= |
Show a legend for the digits:
In[10]:= |
Out[10]= |
Use Placed to change legend position:
In[11]:= |
Out[11]= |
Visualize the base-5 digits of a doubly periodic function:
In[12]:= |
Out[12]= |
This work is licensed under a Creative Commons Attribution 4.0 International License