Function Repository Resource:

# SaundersDigitPlot

Make a Saunders plot of a function

Contributed by: Jan Mangaldan
 ResourceFunction["SaundersDigitPlot"][f,b,k,{x,xmin,xmax},{y,ymin,ymax}] makes a Saunders plot of the kth base‐b digit of f as a function of x and y. ResourceFunction["SaundersDigitPlot"][f,b,k,{x,y}∈reg] takes the variables {x,y} to be in the geometric region reg.

## Details and Options

A Saunders plot plots the digit of f which is the coefficient of b-k,
ResourceFunction["SaundersDigitPlot"] treats the variables in the fourth and fifth arguments as local, effectively using Block.
ResourceFunction["SaundersDigitPlot"] has attribute HoldAll, and evaluates f only after assigning specific numerical values to the independent variables.
In some cases, it may be more efficient to use Evaluate to evaluate f symbolically before specific numerical values are assigned to the independent variables.
ResourceFunction["SaundersDigitPlot"] supports most of the options of DensityPlot.

## Examples

### Basic Examples (3)

A Saunders plot of a function's first base-10 digit to the right of the decimal point:

 In[1]:=
 Out[1]=

Visualize the third binary digit:

 In[2]:=
 Out[2]=

Use a different color scheme and legend:

 In[3]:=
 Out[3]=

### Scope (3)

Use a non-integer base:

 In[4]:=
 Out[4]=

Use PlotPoints and MaxRecursion to control adaptive sampling:

 In[5]:=
 Out[5]=

The domain may be specified by a region:

 In[6]:=
 Out[6]=

### Options (5)

#### ColorFunction (3)

Explicitly specify a color function:

 In[7]:=
 Out[7]=

Use an indexed color:

 In[8]:=
 Out[8]=

 In[9]:=
 Out[9]=

#### PlotLegends (2)

Show a legend for the digits:

 In[10]:=
 Out[10]=

Use Placed to change legend position:

 In[11]:=
 Out[11]=

### Neat Examples (1)

Visualize the base-5 digits of a doubly periodic function:

 In[12]:=
 Out[12]=

## Version History

• 1.0.0 – 22 January 2021