Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Make a Saunders plot of a function
ResourceFunction["SaundersDigitPlot"][f,b,k,{x,xmin,xmax},{y,ymin,ymax}] makes a Saunders plot of the kth base‐b digit of f as a function of x and y. | |
ResourceFunction["SaundersDigitPlot"][f,b,k,{x,y}∈reg] takes the variables {x,y} to be in the geometric region reg. |
A Saunders plot of a function's first base-10 digit to the right of the decimal point:
In[1]:= | ![]() |
Out[1]= | ![]() |
Visualize the third binary digit:
In[2]:= | ![]() |
Out[2]= | ![]() |
Use a different color scheme and legend:
In[3]:= | ![]() |
Out[3]= | ![]() |
Use a non-integer base:
In[4]:= | ![]() |
Out[4]= | ![]() |
Use PlotPoints and MaxRecursion to control adaptive sampling:
In[5]:= | ![]() |
Out[5]= | ![]() |
The domain may be specified by a region:
In[6]:= | ![]() |
Out[6]= | ![]() |
Explicitly specify a color function:
In[7]:= | ![]() |
Out[7]= | ![]() |
Use an indexed color:
In[8]:= | ![]() |
Out[8]= | ![]() |
Use a named color gradient:
In[9]:= | ![]() |
Out[9]= | ![]() |
Show a legend for the digits:
In[10]:= | ![]() |
Out[10]= | ![]() |
Use Placed to change legend position:
In[11]:= | ![]() |
Out[11]= | ![]() |
Visualize the base-5 digits of a doubly periodic function:
In[12]:= | ![]() |
Out[12]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License