Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Represent a polygon with rounded corners
ResourceFunction["RoundedPolygon"][{p1,…,pn},r] represents a filled rounded polygon with points pi and rounding radius r. | |
ResourceFunction["RoundedPolygon"][{p1,…,pn},{r1,…,rn}] represents a filled rounded polygon with points pi and corresponding rounding radii ri. |
A triangle with rounded corners:
In[1]:= |
![]() |
Out[1]= |
![]() |
A rounded rectangle with different rounding radii for each corner:
In[2]:= |
![]() |
Out[2]= |
![]() |
Coordinates for a star-shaped polygon:
In[3]:= |
![]() |
Show the original polygon and the rounded version:
In[4]:= |
![]() |
Out[4]= |
![]() |
Use different rounding radii for each vertex:
In[5]:= |
![]() |
Out[5]= |
![]() |
A rounded 3D polygon:
In[6]:= |
![]() |
Out[6]= |
![]() |
Plot a function over a rounded polygon domain:
In[7]:= |
![]() |
Out[7]= |
![]() |
A polyhedron with rounded faces:
In[8]:= |
![]() |
In[9]:= |
![]() |
Out[9]= |
![]() |
RoundedPolygon returns a Polygon object:
In[10]:= |
![]() |
Out[10]= |
![]() |
Applying RoundedPolygon to a Rectangle is equivalent to setting its RoundingRadius:
In[11]:= |
![]() |
Out[11]= |
![]() |
If the rounding radius is too large, RoundedPolygon may give unexpected results:
In[12]:= |
![]() |
Out[12]= |
![]() |
Use a smaller rounding radius:
In[13]:= |
![]() |
Out[13]= |
![]() |
Rounded Voronoi cells:
In[14]:= |
![]() |
Out[14]= |
![]() |
Use RoundedPolygon with the resource function PerforatePolygons on a truncated icosahedron:
In[15]:= |
![]() |
In[16]:= |
![]() |
Out[16]= |
![]() |
Use RoundedPolygon with the resource function OutlinePolygons on a truncated icosahedron:
In[17]:= |
![]() |
Out[17]= |
![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License