Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Convert a rotation matrix to an equivalent unit quaternion
ResourceFunction["RotationMatrixToQuaternion"][mat] converts the 3×3 rotation matrix mat into an equivalent unit quaternion. |
Generate a rotation matrix:
| In[1]:= |
|
| Out[1]= |
|
Convert to quaternion form:
| In[2]:= |
|
| Out[2]= |
|
A real matrix:
| In[3]:= |
|
| Out[3]= |
|
Convert to quaternion form:
| In[4]:= |
|
| Out[4]= |
|
An approximate MachinePrecision matrix:
| In[5]:= |
|
| Out[5]= |
|
| In[6]:= |
|
| Out[6]= |
|
An approximate arbitrary precision matrix:
| In[7]:= |
|
| Out[7]= |
|
| In[8]:= |
|
| Out[8]= |
|
Create a rotation matrix:
| In[9]:= |
|
| Out[9]= |
|
Also define a vector to be rotated:
| In[10]:= |
|
| Out[10]= |
|
Transform the vector using the rotation matrix representation:
| In[11]:= |
|
| Out[11]= |
|
Transform the vector using the quaternion representation of a rotation to get the same result:
| In[12]:= |
|
| Out[12]= |
|
Generate a matrix from a given set of Euler angles:
| In[13]:= |
|
| Out[13]= |
|
Convert to its quaternion representation:
| In[14]:= |
|
| Out[14]= |
|
Generate a matrix from a given set of roll-pitch-yaw angles:
| In[15]:= |
|
| Out[15]= |
|
Convert to its quaternion representation:
| In[16]:= |
|
| Out[16]= |
|
Generate a random rotation matrix:
| In[17]:= |
|
| Out[17]= |
|
Convert to its quaternion representation:
| In[18]:= |
|
| Out[18]= |
|
This work is licensed under a Creative Commons Attribution 4.0 International License