Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the Ricci scalar for a metric
ResourceFunction["RicciScalar"][M,{u,v}] computes the Ricci scalar for a metric M in terms of variables u and v. |
The monkey saddle surface:
| In[1]:= |
| In[2]:= |
| Out[2]= |
Plot the surface:
| In[3]:= |
| Out[3]= | ![]() |
The covariant basis:
| In[4]:= |
| Out[4]= |
The metric tensor:
| In[5]:= |
| Out[5]= |
The metric tensor in normal form:
| In[6]:= |
| Out[6]= |
Compute the Ricci scalar from the metric:
| In[7]:= |
| Out[7]= |
Alternately, compute the Ricci scalar via the Ricci curvature:
| In[8]:= |
| Out[8]= |
Contracting an index gives the Ricci scalar:
| In[9]:= |
| Out[9]= |
Confirm that this is equivalent to the Ricci curvature computed previously from the metric directly:
| In[10]:= |
| Out[10]= |
The metric tensor for an arbitrary metric:
| In[11]:= |
| Out[11]= |
The Brioschi formula for the Gaussian curvature:
| In[12]:= | ![]() |
Compute the Ricci scalar for the arbitrary metric:
| In[13]:= |
| Out[13]= | ![]() |
Prove that this coincides with twice the Gaussian curvature:
| In[14]:= |
| Out[14]= |
This work is licensed under a Creative Commons Attribution 4.0 International License