Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Recognize functions by their power series expansions
ResourceFunction["RecognizeSeries"][series] attemps to find a function that generates the given power series. |
Recognize power series:
In[1]:= |
![]() |
Out[1]= |
![]() |
In[2]:= |
![]() |
Out[2]= |
![]() |
Recognize partial sums of series expansions:
In[3]:= |
![]() |
Out[3]= |
![]() |
In[4]:= |
![]() |
Out[4]= |
![]() |
In[5]:= |
![]() |
Out[5]= |
![]() |
Recognize products of functions:
In[6]:= |
![]() |
Out[6]= |
![]() |
In[7]:= |
![]() |
Out[7]= |
![]() |
In[8]:= |
![]() |
Out[8]= |
![]() |
In[9]:= |
![]() |
Out[9]= |
![]() |
Recognize sums and differences:
In[10]:= |
![]() |
Out[10]= |
![]() |
In[11]:= |
![]() |
Out[11]= |
![]() |
In[12]:= |
![]() |
Out[12]= |
![]() |
More complicated functions take longer:
In[13]:= |
![]() |
Out[13]= |
![]() |
RecognizeSeries may return generators in unsimplified forms:
In[14]:= |
![]() |
Out[14]= |
![]() |
In[15]:= |
![]() |
Out[15]= |
![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License