Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Generate a maze based on the Sierpinski carpet
ResourceFunction["RandomSierpinskiMaze"][scale] returns the ArrayPlot of a maze drawn by connecting dots on a square fragment of the Sierpiński carpet fractal, whose length dimension roughly equals 3scale+1. | |
ResourceFunction["RandomSierpinskiMaze"][scale, AdjacencyGraph] returns a primitive Graph of the maze, which determines allowable moves on the corresponding ArrayPlot. |
Depict a basic unit of the randomized maze:
In[1]:= |
Out[2]= |
Scale up the basic unit by areal factors of 9:
In[3]:= |
Out[3]= |
Compare the ArrayPlot with its primitive Graph:
In[4]:= |
Out[4]= |
Display the same Graph coordinate-free and highlight a shortest path between corners:
In[5]:= |
Out[5]= |
Depict the path in an ArrayPlot:
In[6]:= |
Out[6]= |
The measured complexity is super-exponential with regard to input scale, but it is possible to obtain mazes up to scale=4 in reasonable time:
In[7]:= |
Out[7]= |
Use ArrayMesh to build a maze out of voxels:
In[8]:= |
In[9]:= |
Out[9]= |
Transform output Graph to a knight's walk graph:
In[10]:= |
In[11]:= |
In[12]:= |
Out[12]= |
Draw the knight's walk Graph over the maze adjacency Graph:
In[13]:= |
Out[13]= |
Depict a knight's shortest path between corners:
In[14]:= |
Out[14]= |
This work is licensed under a Creative Commons Attribution 4.0 International License