Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Convert a discrete quantum operator into a ZX-diagram
ResourceFunction["QuantumDiscreteOperatorToZXDiagram"][QuantumDiscreteOperator[…]] converts the specified QuantumDiscreteOperator into an equivalent ZXDiagramObject. |
"LabeledGraph" | graph form of the ZX-diagram with phases labeled |
"UnlabeledGraph" | graph form of the ZX-diagram without phases labeled |
"OperatorForm" | ZX-diagram represented as a tensor product of generators |
"ListForm" | ZX-diagram represented as a list of generators |
"MatrixForm" | ZX-diagram represented as an explicit linear map on qubits |
"ZSpiders" | list of Z-spiders in the ZX-diagram |
"XSpiders" | list of X-spiders in the ZX-diagram |
"HadamardGates" | list of Hadamard gates in the ZX-diagram |
"Diamonds" | list of black diamonds in the ZX-diagram |
"Wires" | list of wires in the ZX-diagram |
"ZSpiderCount" | number of Z-spiders in the ZX-diagram |
"XSpiderCount" | number of X-spiders in the ZX-diagram |
"HadamardGateCount" | number of Hadamard gates in the ZX-diagram |
"DiamondCount" | number of black diamonds in the ZX-diagram |
"WireCount" | number of wires in the ZX-diagram |
Convert an arity-1 discrete quantum operator (a Pauli-Z gate) into a single-spider ZX-diagram:
In[1]:= |
|
Out[1]= |
|
In[2]:= |
|
Out[2]= |
|
In[3]:= |
|
Out[3]= |
|
Convert a different arity-1 discrete quantum operator (a Hadamard gate) into a three-spider ZX-diagram:
In[4]:= |
|
Out[4]= |
|
In[5]:= |
|
Out[5]= |
|
In[6]:= |
|
Out[6]= |
|
In[7]:= |
|
Out[7]= |
|
Convert an arity-2 discrete quantum operator (a CNOT gate) into a two-spider ZX-diagram:
In[8]:= |
|
Out[8]= |
|
In[9]:= |
|
Out[9]= |
|
In[10]:= |
|
Out[10]= |
|
In[11]:= |
|
Out[11]= |
|
Show the layered graph form of the ZX-diagram with the inputs at the top:
In[12]:= |
|
Out[12]= |
|
Convert a CNOT gate with an additional control qubit (i.e. an arity-3 Toffoli gate) into a three-spider ZX-diagram:
In[13]:= |
|
Out[13]= |
|
In[14]:= |
|
Out[14]= |
|
In[15]:= |
|
Out[15]= |
|
In[16]:= |
|
Out[16]= |
|
Show the layered graph form of the ZX-diagram with the inputs at the top:
In[17]:= |
|
Out[17]= |
|
Convert a more complicated arity-3 quantum Fourier transform operator into a 15-spider ZX-diagram:
In[18]:= |
|
Out[18]= |
|
In[19]:= |
|
Out[19]= |
|
In[20]:= |
|
Out[20]= |
|
In[21]:= |
|
Out[21]= |
|
Show the layered graph form of the ZX-diagram with the inputs at the top:
In[22]:= |
|
Out[22]= |
|
Convert an arity-4 inverse quantum Fourier transform operator into a 24-spider ZX-diagram:
In[23]:= |
|
Out[23]= |
|
In[24]:= |
|
Out[24]= |
|
In[25]:= |
|
Out[25]= |
|
Show the layered graph form of the ZX-diagram with the inputs at the top:
In[26]:= |
|
Out[26]= |
|
Convert an inverse quantum Fourier transform operator with two additional control qubits into a 26-spider ZX-diagram:
In[27]:= |
|
Out[27]= |
|
In[28]:= |
|
Out[28]= |
|
In[29]:= |
|
Out[29]= |
|
Show the layered graph form of the ZX-diagram with the inputs at the top:
In[30]:= |
|
Out[30]= |
|
If the specified QuantumDiscreteOperator object cannot be expressed as a ZX-diagram, QuantumDiscreteOperatorToZXDiagram will return Indeterminate:
In[31]:= |
|
Out[31]= |
|
In[32]:= |
|
Out[32]= |
|
Convert an S-gate (a π/2 phase change gate) to a ZX-diagram:
In[33]:= |
|
Out[33]= |
|
Convert a T-gate (a π/8 phase change gate) to a ZX-diagram:
In[34]:= |
|
Out[34]= |
|
Convert a CNOT gate (a controlled NOT gate) to a ZX-diagram:
In[35]:= |
|
Out[35]= |
|
Convert a CPHASE gate (a controlled π phase change gate) to a ZX-diagram:
In[36]:= |
|
Out[36]= |
|
Convert a CX gate (a controlled Pauli-X gate—equivalent to a CNOT) to a ZX-diagram:
In[37]:= |
|
Out[37]= |
|
Convert a CY gate (a controlled Pauli-Y gate) to a ZX-diagram:
In[38]:= |
|
Out[38]= |
|
Convert a CZ gate (a controlled Pauli-Z gate) to a ZX-diagram:
In[39]:= |
|
Out[39]= |
|
Convert a controlled-U gate (with U being a 2-by-2 Hadamard matrix) to a ZX-diagram with one control qubit:
In[40]:= |
|
Out[40]= |
|
Convert a controlled-U gate (with U being a 2-by-2 Hadamard matrix) to a ZX-diagram with three control qubits instead:
In[41]:= |
|
Out[41]= |
|
Convert a single-qubit QFT gate (quantum Fourier transform) to a ZX-diagram:
In[42]:= |
|
Out[42]= |
|
Convert a two-qubit QFT gate (quantum Fourier transform) to a ZX-diagram:
In[43]:= |
|
Out[43]= |
|
Convert a three-qubit QFT gate (quantum Fourier transform) to a ZX-diagram:
In[44]:= |
|
Out[44]= |
|
Convert a four-qubit QFT gate (quantum Fourier transform) to a ZX-diagram:
In[45]:= |
|
Out[45]= |
|
Convert a single-qubit IQFT gate (inverse quantum Fourier transform) to a ZX-diagram:
In[46]:= |
|
Out[46]= |
|
Convert a two-qubit IQFT gate (inverse quantum Fourier transform) to a ZX-diagram:
In[47]:= |
|
Out[47]= |
|
Convert a three-qubit IQFT gate (inverse quantum Fourier transform) to a ZX-diagram:
In[48]:= |
|
Out[48]= |
|
Convert a four-qubit IQFT gate (inverse quantum Fourier transform) to a ZX-diagram:
In[49]:= |
|
Out[49]= |
|
Convert a SUM gate (a half-adder for qubits—similar to a CNOT gate) to a ZX-diagram:
In[50]:= |
|
Out[50]= |
|
Convert a Pauli-X gate (a π rotation around the x axis of the Bloch sphere) to a ZX-diagram:
In[51]:= |
|
Out[51]= |
|
Convert a Pauli-Y gate (a π rotation around the y axis of the Bloch sphere) to a ZX-diagram:
In[52]:= |
|
Out[52]= |
|
Convert a Pauli-Z gate (a π rotation around the z axis of the Bloch sphere) to a ZX-diagram:
In[53]:= |
|
Out[53]= |
|
Convert the square root of a NOT gate (half a Pauli-X rotation) to a ZX-diagram:
In[54]:= |
|
Out[54]= |
|
Convert a Toffoli gate (a π/2 Deutsch gate) to a ZX-diagram:
In[55]:= |
|
Out[55]= |
|
This work is licensed under a Creative Commons Attribution 4.0 International License