Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the radial pseudo-Zernike polynomial
ResourceFunction["PseudoZernikeR"][n,m,r] gives the radial pseudo-Zernike polynomial |
Evaluate numerically:
| In[1]:= |
| Out[1]= |
Evaluate symbolically:
| In[2]:= |
| Out[2]= |
Plot over a subset of the reals:
| In[3]:= |
| Out[3]= | ![]() |
Evaluate to high precision:
| In[4]:= |
| Out[4]= |
The precision of the output tracks the precision of the input:
| In[5]:= |
| Out[5]= |
Simple exact values are generated automatically:
| In[6]:= |
| Out[6]= |
PseudoZernikeR threads elementwise over lists:
| In[7]:= |
| Out[7]= |
Obtain the pseudo-Zernike polynomials from their generating function:
| In[8]:= | ![]() |
| Out[8]= |
| In[9]:= |
| Out[9]= |
Compare with the directly computed sequence:
| In[10]:= |
| Out[10]= |
Verify an expression for the pseudo-Zernike polynomial in terms of the Jacobi polynomial JacobiP:
| In[11]:= | ![]() |
| Out[11]= |
Verify a recurrence relation for the pseudo-Zernike polynomials:
| In[12]:= | ![]() |
| Out[12]= |
Verify the orthogonality relation for the pseudo-Zernike polynomials:
| In[13]:= | ![]() |
| Out[13]= | ![]() |
Visualize pseudo-Zernike polynomials over the unit disk:
| In[14]:= | ![]() |
| Out[14]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License