Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the radial pseudo-Zernike polynomial
ResourceFunction["PseudoZernikeR"][n,m,r] gives the radial pseudo-Zernike polynomial |
Evaluate numerically:
In[1]:= | ![]() |
Out[1]= | ![]() |
Evaluate symbolically:
In[2]:= | ![]() |
Out[2]= | ![]() |
Plot over a subset of the reals:
In[3]:= | ![]() |
Out[3]= | ![]() |
Evaluate to high precision:
In[4]:= | ![]() |
Out[4]= | ![]() |
The precision of the output tracks the precision of the input:
In[5]:= | ![]() |
Out[5]= | ![]() |
Simple exact values are generated automatically:
In[6]:= | ![]() |
Out[6]= | ![]() |
PseudoZernikeR threads elementwise over lists:
In[7]:= | ![]() |
Out[7]= | ![]() |
Obtain the pseudo-Zernike polynomials from their generating function:
In[8]:= | ![]() |
Out[8]= | ![]() |
In[9]:= | ![]() |
Out[9]= | ![]() |
Compare with the directly computed sequence:
In[10]:= | ![]() |
Out[10]= | ![]() |
Verify an expression for the pseudo-Zernike polynomial in terms of the Jacobi polynomial JacobiP:
In[11]:= | ![]() |
Out[11]= | ![]() |
Verify a recurrence relation for the pseudo-Zernike polynomials:
In[12]:= | ![]() |
Out[12]= | ![]() |
Verify the orthogonality relation for the pseudo-Zernike polynomials:
In[13]:= | ![]() |
Out[13]= | ![]() |
Visualize pseudo-Zernike polynomials over the unit disk:
In[14]:= | ![]() |
Out[14]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License