Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the product integral of a function
ResourceFunction["ProductIntegrate"][f,x] gives the indefinite product integral | |
ResourceFunction["ProductIntegrate"][f,{x,xmin,xmax}] gives the definite product integral |
Indefinite product integral of an exponential function:
In[1]:= | ![]() |
Out[1]= | ![]() |
Definite product integral of an exponential function:
In[2]:= | ![]() |
Out[2]= | ![]() |
Evaluate the indefinite product integral of a power function:
In[3]:= | ![]() |
Out[3]= | ![]() |
Use Assuming to get a simpler expression:
In[4]:= | ![]() |
Out[4]= | ![]() |
This is the same as using the Assumptions option:
In[5]:= | ![]() |
Out[5]= | ![]() |
By default, conditions are generated on parameters that guarantee convergence:
In[6]:= | ![]() |
Out[6]= | ![]() |
With Assumptions, a result valid under the given assumptions is given:
In[7]:= | ![]() |
Out[7]= | ![]() |
Evaluate the indefinite product integral of a linear function:
In[8]:= | ![]() |
Out[8]= | ![]() |
Use the fundamental theorem of product calculus:
In[9]:= | ![]() |
Out[9]= | ![]() |
This is the same as directly evaluating a definite product integral:
In[10]:= | ![]() |
Out[10]= | ![]() |
ProductIntegrate is the inverse of the resource function ProductD, under certain conditions:
In[11]:= | ![]() |
Out[11]= | ![]() |
In[12]:= | ![]() |
Out[12]= | ![]() |
ProductIntegrate uses Integrate internally, and if the underlying Integrate fails to evaluate, the expression is left unevaluated:
In[13]:= | ![]() |
Out[13]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License