Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the product integral of a function
ResourceFunction["ProductIntegrate"][f,x] gives the indefinite product integral | |
ResourceFunction["ProductIntegrate"][f,{x,xmin,xmax}] gives the definite product integral |
Indefinite product integral of an exponential function:
| In[1]:= |
| Out[1]= |
Definite product integral of an exponential function:
| In[2]:= |
| Out[2]= |
Evaluate the indefinite product integral of a power function:
| In[3]:= |
| Out[3]= |
Use Assuming to get a simpler expression:
| In[4]:= |
| Out[4]= |
This is the same as using the Assumptions option:
| In[5]:= |
| Out[5]= |
By default, conditions are generated on parameters that guarantee convergence:
| In[6]:= |
| Out[6]= |
With Assumptions, a result valid under the given assumptions is given:
| In[7]:= |
| Out[7]= |
Evaluate the indefinite product integral of a linear function:
| In[8]:= |
| Out[8]= |
Use the fundamental theorem of product calculus:
| In[9]:= |
| Out[9]= |
This is the same as directly evaluating a definite product integral:
| In[10]:= |
| Out[10]= |
ProductIntegrate is the inverse of the resource function ProductD, under certain conditions:
| In[11]:= |
| Out[11]= |
| In[12]:= |
| Out[12]= |
ProductIntegrate uses Integrate internally, and if the underlying Integrate fails to evaluate, the expression is left unevaluated:
| In[13]:= |
| Out[13]= |
This work is licensed under a Creative Commons Attribution 4.0 International License