Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Quickly cluster a point cloud by recursive separation
ResourceFunction["PrincipalAxisClustering"][{{p11,p12,…},{p21,p22,…},…}] recursively partitions the given points into approximately equal-sized clusters along their principal axis. | |
ResourceFunction["PrincipalAxisClustering"][points,n] partitions points into at most n clusters. |
Cluster one-dimensional data:
In[1]:= | ![]() |
Out[1]= | ![]() |
Find exactly four clusters:
In[2]:= | ![]() |
Out[2]= | ![]() |
Cluster vectors of real values:
In[3]:= | ![]() |
Out[3]= | ![]() |
Partition a 3D point cloud:
In[4]:= | ![]() |
Out[4]= | ![]() |
In[5]:= | ![]() |
Out[5]= | ![]() |
Cluster high-dimensional data:
In[6]:= | ![]() |
Out[6]= | ![]() |
Downsample a large point cloud by choosing nicely spaced representative points:
In[12]:= | ![]() |
In[13]:= | ![]() |
Out[13]= | ![]() |
Compare to random sampling:
In[14]:= | ![]() |
Out[14]= | ![]() |
The axis representing each cluster separation corresponds to the first component in PrincipalComponents:
In[15]:= | ![]() |
In[16]:= | ![]() |
Out[16]= | ![]() |
In[17]:= | ![]() |
Out[17]= | ![]() |
The principal axis can be obtained from the Eigenvectors of the Covariance matrix:
In[18]:= | ![]() |
Out[18]= | ![]() |
Visualize the axis over the original data:
In[19]:= | ![]() |
Out[19]= | ![]() |
Projecting the standardized points onto the principal axis gives scalar values that indicate which cluster they belong to:
In[20]:= | ![]() |
Out[20]= | ![]() |
PrincipalAxisClustering finds clusters very quickly:
In[21]:= | ![]() |
Out[21]= | ![]() |
In[22]:= | ![]() |
Out[22]= | ![]() |
Compare to FindClusters:
In[23]:= | ![]() |
Out[23]= | ![]() |
PrincipalAxisClustering gives clusters that better represent the local point cloud density:
In[24]:= | ![]() |
Out[24]= | ![]() |
FindClusters represents better separation of the data:
In[25]:= | ![]() |
Out[25]= | ![]() |
PrincipalAxisClustering partitions points into non-overlapping convex regions:
In[26]:= | ![]() |
In[27]:= | ![]() |
Out[27]= | ![]() |
The number of clusters locally scales with the point cloud density:
In[28]:= | ![]() |
Out[28]= | ![]() |
In[29]:= | ![]() |
Out[29]= | ![]() |
If the number of requested clusters is not a power of 2, then cluster sizes will not be well balanced:
In[30]:= | ![]() |
In[31]:= | ![]() |
Out[31]= | ![]() |
In[32]:= | ![]() |
Out[32]= | ![]() |
Visualize the recursive nature of the clustering:
In[33]:= | ![]() |
In[34]:= | ![]() |
In[35]:= | ![]() |
Out[35]= | ![]() |
Partition a point cloud into clusters:
In[36]:= | ![]() |
Out[36]= | ![]() |
Remove some outliers from each cluster:
In[37]:= | ![]() |
In[38]:= | ![]() |
In[39]:= | ![]() |
Construct a parameterized topological representation of the point cloud:
In[40]:= | ![]() |
Out[40]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License