Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Generate the canonical form of a convex polyhedron
ResourceFunction["PolyhedronCanonicalForm"][poly] gives the canonical form of the convex polyhedron poly. |
MaxIterations | 100 | maximum number of iterations to use |
Tolerance | Automatic | tolerance to be used for internal comparisons |
WorkingPrecision | MachinePrecision | the precision used in internal computations |
The tetrahedrally stellated icosahedron:
In[1]:= | ![]() |
In[2]:= | ![]() |
Out[2]= | ![]() |
The canonical form of the polyhedron:
In[3]:= | ![]() |
Out[3]= | ![]() |
In[4]:= | ![]() |
Out[4]= | ![]() |
PolyhedronCanonicalForm can be used on MeshRegion or BoundaryMeshRegion objects:
In[5]:= | ![]() |
Out[5]= | ![]() |
Use a smaller number of iterations:
In[6]:= | ![]() |
Out[6]= | ![]() |
Use a looser tolerance:
In[7]:= | ![]() |
Out[7]= | ![]() |
Use a higher precision setting in internal computations:
In[8]:= | ![]() |
Out[8]= | ![]() |
Define J. H. Conway's "hermaphrodite" polyhedron:
In[9]:= | ![]() |
In[10]:= | ![]() |
Out[10]= | ![]() |
Visualize the canonical form:
In[11]:= | ![]() |
Out[11]= | ![]() |
The canonical form is self-dual:
In[12]:= | ![]() |
Out[12]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License