Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Generate the canonical form of a convex polyhedron
ResourceFunction["PolyhedronCanonicalForm"][poly] gives the canonical form of the convex polyhedron poly. |
| MaxIterations | 100 | maximum number of iterations to use |
| Tolerance | Automatic | tolerance to be used for internal comparisons |
| WorkingPrecision | MachinePrecision | the precision used in internal computations |
The tetrahedrally stellated icosahedron:
| In[1]:= |
| In[2]:= |
| Out[2]= | ![]() |
The canonical form of the polyhedron:
| In[3]:= |
| Out[3]= |
| In[4]:= |
| Out[4]= | ![]() |
PolyhedronCanonicalForm can be used on MeshRegion or BoundaryMeshRegion objects:
| In[5]:= |
| Out[5]= | ![]() |
Use a smaller number of iterations:
| In[6]:= |
| Out[6]= |
Use a looser tolerance:
| In[7]:= |
| Out[7]= |
Use a higher precision setting in internal computations:
| In[8]:= | ![]() |
| Out[8]= |
Define J. H. Conway's "hermaphrodite" polyhedron:
| In[9]:= | ![]() |
| In[10]:= |
| Out[10]= | ![]() |
Visualize the canonical form:
| In[11]:= |
| Out[11]= | ![]() |
The canonical form is self-dual:
| In[12]:= |
| Out[12]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License