Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the Poincaré polynomial for a simplicial complex
ResourceFunction["PoincarePolynomial"][cplx] gives the Poincaré polynomial for the specified simplicial complex cplx. |
simplex | a simplex as defined in the table below |
{simplex1,simplex2,…} | a list of simplices |
{{v11,v12,…},…} | a list of lists, where the vi,j correspond to simplex vertices |
Graph[…] | a graph object |
MeshRegion[…] | a mesh region |
Get the Poincaré polynomial for a simplex:
In[1]:= |
Out[1]= |
Get the Poincaré polynomial for a simplicial complex:
In[2]:= |
Out[2]= |
Get the Poincaré polynomial for a MeshRegion:
In[3]:= |
Out[3]= |
Specify the variable:
In[4]:= |
Out[4]= |
Obtain the Poincaré polynomial as a Function:
In[5]:= |
Out[5]= |
Obtain a Series:
In[6]:= |
Out[6]= |
Many graphics primitives that represent simplices can be used:
In[7]:= |
Out[7]= |
In[8]:= |
Out[8]= |
In[9]:= |
Out[9]= |
A simplicial complex can be specified as lists of indices:
In[10]:= |
Out[10]= |
Get the Poincaré polynomial for a graph:
In[11]:= |
Out[11]= |
The coefficient of xk in the Poincaré polynomial corresponds to the Betti number bk:
In[12]:= |
In[13]:= |
Out[13]= |
PoincarePolynomial only considers unique vertices in each simplex:
In[14]:= |
In[15]:= |
Out[15]= |
In[16]:= |
Out[16]= |
As graphs, these are considered distinct:
In[17]:= |
Out[17]= |
In[18]:= |
Out[18]= |
In[19]:= |
Out[19]= |
The same is true for hypergraphs:
In[20]:= |
Out[20]= |
All graphs are treated as undirected:
In[21]:= |
Out[21]= |
In[22]:= |
Out[22]= |
This means that the first coefficient corresponds to the number of WeaklyConnectedGraphComponents instead of ConnectedGraphComponents:
In[23]:= |
Out[23]= |
In[24]:= |
Out[24]= |
The Poincaré polynomial does not identify links, knots or braids:
In[25]:= |
Out[25]= |
In[26]:= |
Out[26]= |
The Poincaré polynomial cannot determine orientability:
In[27]:= |
Out[27]= |
In[28]:= |
Out[28]= |
PoincarePolynomial only allows Polygon objects with three vertices:
In[29]:= |
Out[29]= |
In[30]:= |
Out[30]= |
The Poincaré–Birdnardo polynomial is a special case of the Poincaré polynomial:
In[31]:= |
Out[31]= |
In[32]:= |
Out[32]= |
This work is licensed under a Creative Commons Attribution 4.0 International License