Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Perform persistent homology on a point cloud dataset
ResourceFunction["PersistentHomology"][{e1,e2,…}] performs persistent homology on the ei and returns a PersistentHomologyObject that can be queried for results. | |
ResourceFunction["PersistentHomology"][{e1,e2,…},"Modulus"→p] performs persistent homology over the coefficient field ℤp. |
| "Distance" | "Maximal" | the maximal distance scale to perform homology |
| "Modulus" | 2 | the characteristic of the coefficient field used |
Perform persistent homology on random data:
| In[1]:= |
| Out[1]= | ![]() |
Query the output for the barcode:
| In[2]:= |
| Out[2]= | ![]() |
Visualize the MeshRegion for the H1 generator found:
| In[3]:= |
| Out[3]= | ![]() |
PersistentHomology can be performed for data of any dimension:
| In[4]:= |
| In[5]:= |
| Out[5]= | ![]() |
Evaluate the persistent homology of data with dimension 1000:
| In[6]:= |
| In[7]:= |
| Out[7]= | ![]() |
The maximum distance used in computations can be specified:
| In[8]:= |
| In[9]:= |
| Out[9]= | ![]() |
This will sometimes speed up computation times:
| In[10]:= |
| Out[10]= | ![]() |
| In[11]:= |
| Out[11]= | ![]() |
The finite field chosen for computations can be specified:
| In[12]:= |
| In[13]:= |
| Out[13]= | ![]() |
PersistentHomology is invariant under isometries:
| In[14]:= |
| In[15]:= |
| Out[15]= | ![]() |
| In[16]:= |
| Out[16]= | ![]() |
| In[17]:= |
| Out[17]= | ![]() |
PersistentHomology computation times grow quickly in the number of data points:
| In[18]:= |
| Out[18]= | ![]() |
| In[19]:= |
| Out[19]= | ![]() |
| In[20]:= |
| Out[20]= | ![]() |
| In[21]:= |
| Out[21]= | ![]() |
Draw some data in
and perform PersistentHomology on it:
| In[22]:= | ![]() |
| Out[22]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License