Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Calculate the number of permutations of the specified cycle length counts
ResourceFunction["PermutationCountByCycleLength"][{λ1,λ2,…}] gives the number of permutations of the specified cycle length counts {λ1,λ2,…}. |
The number of 6-permutations that have two 1-cycles and three 2-cycles:
In[1]:= | ![]() |
Out[1]= | ![]() |
There are (n-1)! n-permutations with one cycle:
In[2]:= | ![]() |
In[3]:= | ![]() |
Out[3]= | ![]() |
In[4]:= | ![]() |
Out[4]= | ![]() |
There are n(n-2)! n-permutations with one singleton cycle and one (n-1)-cycle:
In[5]:= | ![]() |
In[6]:= | ![]() |
Out[6]= | ![]() |
In[7]:= | ![]() |
Out[7]= | ![]() |
The CycleLengthCountList resource function is a list of all possible cycle length counts (permutation types) into which an n-permutation can be partitioned:
In[8]:= | ![]() |
In[9]:= | ![]() |
Out[10]= | ![]() |
Count permutations by type:
In[11]:= | ![]() |
Out[11]= | ![]() |
As expected, there are n! permutations:
In[12]:= | ![]() |
Out[12]= | ![]() |
Use PermutationCountByCycleLength to tally the number of permutations of all the possible types:
In[13]:= | ![]() |
Out[13]= | ![]() |
Tallying CycleLengthCounts in the Permutations list gives the same result:
In[14]:= | ![]() |
Out[14]= | ![]() |
In[15]:= | ![]() |
Out[15]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License