Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Generate a periodic pattern
ResourceFunction["PeriodicPatternGenerator"][{n,{x,y},disp}] creates a periodic square array with a side length of x×y based on repeated x×y rectangles filled with the digits of integer n in base 2 with displacement disp on subsequent rows. | |
ResourceFunction["PeriodicPatternGenerator"][{n,{x,y},disp,b}] uses base b. |
Create a periodic pattern based on the binary expansion of 3::
| In[1]:= |
| Out[1]= |
Show a binary periodic pattern:
| In[2]:= |
| Out[2]= | ![]() |
Show the order 2 binary periodic patterns (horizontal stripes, vertical stripes, checkerboard):
| In[3]:= | ![]() |
| Out[4]= | ![]() |
Show all eight order 3 binary periodic patterns:
| In[5]:= | ![]() |
| Out[6]= | ![]() |
Show all twenty order 4 periodic patterns (with Tooltips):
| In[7]:= | ![]() |
| Out[7]= | ![]() |
These periodic patterns are equivalent by displacement:
| In[8]:= | ![]() |
| Out[8]= | ![]() |
There are 8 order-3 ternary periodic patterns:
| In[9]:= | ![]() |
| Out[9]= | ![]() |
There are 65 order-4 ternary periodic patterns:
| In[10]:= | ![]() |
| Out[10]= | ![]() |
Boring patterns usually have a simpler representation:
| In[11]:= | ![]() |
| Out[11]= | ![]() |
| In[12]:= | ![]() |
| Out[12]= | ![]() |
Using PeriodicPatternGenerator, CanonicalListRotation and a brute force algorithm, we can find all displacement-distinct binary patterns up to order 9, given here as a convenience:
| In[13]:= |
Show all 180 order 5 ternary patterns:
| In[14]:= | ![]() |
| Out[14]= | ![]() |
Show samples of the 129064 order 16 binary patterns:
| In[15]:= | ![]() |
| Out[15]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License