Function Repository Resource:

OsculatingCircleProperties

Source Notebook

Compute the defining properties of the osculating circle for a curve at a point

Contributed by: Wolfram|Alpha Math Team

ResourceFunction["OsculatingCircleProperties"][f,{x,a}, y]

gives the osculating circle of the curve f at the point x=a with respect to the variables x and y.

ResourceFunction["OsculatingCircleProperties"][f,{x,a},{y,b}]

gives the osculating circle of f at the point (a,b) with respect to the variables x and y.

ResourceFunction["OsculatingCircleProperties"][{f[t],g[t]},{t,t0},x,y]

gives the osculating circle to the parameterized curve at the point t0.

ResourceFunction["OsculatingCircleProperties"][,type]

gives the property type of the osculating circle.

Details

The property type can be All, "Radius", "Curvature", "Center", "Equation", "Function", "Circle", "Normal" and "Plot".
If f is an expression in ResourceFunction["OsculatingCircleProperties"][f,{x,a},y], the implicit curve is taken to be y==f.

Examples

Basic Examples (3) 

Return the osculating circle for a given expression:

In[1]:=
ResourceFunction[
 "OsculatingCircleProperties", ResourceSystemBase -> "https://www.wolframcloud.com/obj/resourcesystem/api/1.0"][x^3, {x, 2}, {y, 8}]
Out[1]=

Return the osculating circle for a parametrically defined curve:

In[2]:=
ResourceFunction[
 "OsculatingCircleProperties", ResourceSystemBase -> "https://www.wolframcloud.com/obj/resourcesystem/api/1.0"][{t, t^2}, {t, s}, x, y]
Out[2]=

Return the osculating circle for an implicitly defined curve:

In[3]:=
ResourceFunction[
 "OsculatingCircleProperties", ResourceSystemBase -> "https://www.wolframcloud.com/obj/resourcesystem/api/1.0"][y^2 == x, {x, 1}, {y, 1}, All]
Out[3]=

Applications (4) 

Return the osculating circle:

In[4]:=
ResourceFunction[
 "OsculatingCircleProperties", ResourceSystemBase -> "https://www.wolframcloud.com/obj/resourcesystem/api/1.0"][x^2, {x, 0}, y, All]
Out[4]=

Return only the circle as a Graphics primitive:

In[5]:=
res = ResourceFunction[
  "OsculatingCircleProperties", ResourceSystemBase -> "https://www.wolframcloud.com/obj/resourcesystem/api/1.0"][x^2, {x, 0}, y, "Circle"]
Out[5]=

Plot the osculating circle and expression:

In[6]:=
Show[{Graphics[res], Plot[x^2, {x, -1, 1}]}]
Out[6]=

Or view the plot directly:

In[7]:=
ResourceFunction[
 "OsculatingCircleProperties", ResourceSystemBase -> "https://www.wolframcloud.com/obj/resourcesystem/api/1.0"][x^2, {x, 0}, y, "Plot"]
Out[7]=

Possible Issues (2) 

OsculatingCircleProperties returns unevaluated if the curvature does not exist at a given point:

Out[8]=

OsculatingCircleProperties returns unevaluated if the gradient is zero:

Out[9]=

Publisher

Wolfram|Alpha Math Team

Version History

  • 2.0.0 – 23 March 2023
  • 1.0.1 – 04 March 2021
  • 1.0.0 – 31 March 2020

Related Resources

Author Notes

To view the full source code for OsculatingCircleProperties, evaluate the following:

In[1]:=
SystemOpen[
 FileNameJoin[{DirectoryName[FindFile["ResourceFunctionHelpers`"]], "OsculatingCircle.wl"}]]

License Information