Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Find the best fitting line with respect to orthogonal distance
ResourceFunction["OrthogonalLineFit"][data] finds the best fitting orthogonal distance regression line to data. |
Parameters for a 2D line:
| In[1]:= |
| Out[1]= |
Generate some points near the line:
| In[2]:= |
| Out[2]= | ![]() |
Find the orthogonal distance regression line:
| In[3]:= |
| Out[3]= |
Compare the regression line and the true line with the data:
| In[4]:= | ![]() |
| Out[4]= | ![]() |
Parameters for a 3D line:
| In[5]:= |
| Out[5]= |
Generate some points near the line:
| In[6]:= |
| Out[6]= | ![]() |
Find the orthogonal distance regression line:
| In[7]:= |
| Out[7]= |
Compare the regression line and the true line with the data:
| In[8]:= | ![]() |
| Out[8]= | ![]() |
Here is a list of values:
| In[9]:= |
When coordinates are not given, OrthogonalLineFit assumes the values are to be paired up with 1,2,…:
| In[10]:= |
| Out[10]= |
| In[11]:= |
| Out[11]= | ![]() |
Here is some data:
| In[12]:= |
This computes the parameters for the orthogonal distance regression line using the definition:
| In[13]:= | ![]() |
| Out[13]= |
Use OrthogonalLineFit to get the best-fit line:
| In[14]:= |
| Out[14]= |
Use RegionMember to compare the equations for the best fit line generated by both methods:
| In[15]:= |
| Out[15]= |
Construct a function from the orthogonal fit:
| In[16]:= |
| Out[16]= |
Compare the orthogonal fit with the conventional least-squares fit:
| In[17]:= |
| Out[17]= |
| In[18]:= | ![]() |
| Out[18]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License