Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Determine the value of an integral using a numerical method
ResourceFunction["NumericalIntegralApproximation"][f,{x,xmin,xmax},method] gives a numerical approximation to the integral   | 
| "Midpoint" | midpoint rule | 
| "RightHand" | right Riemann sum | 
| "LeftHand" | left Riemann sum | 
| "Simpson" | Simpson's rule | 
| "Trapezoidal" | trapezoidal rule | 
| "Boole" | Boole's rule | 
| "Intervals" | Automatic | the number of subintervals to divide the integral into | 
| WorkingPrecision | MachinePrecision | the precision used in internal computations | 
Integrate expressions using classic numerical methods such as Simpson’s rule:
| In[1]:= | 
| Out[1]= | 
Compare left hand, right hand, and midpoint integrations:
| In[2]:= | 
| Out[2]= | 
| In[3]:= | 
| Out[3]= | 
| In[4]:= | 
| Out[4]= | 
Compute integrals with "Trapezoidal" or "Boole" rules:
| In[5]:= | 
| Out[5]= | 
| In[6]:= | 
| Out[6]= | 
Increase accuracy by using multiple intervals:
| In[7]:= | 
| Out[7]= | 
Examine how increasing the number of intervals affects the result:
| In[8]:= | ![]()  | 
| In[9]:= | 
| Out[9]= | ![]()  | 
Compare the results to the exact answer:
| In[10]:= | 
| Out[10]= | 
| In[11]:= | 
| Out[11]= | 
This work is licensed under a Creative Commons Attribution 4.0 International License