Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
A statistical distribution for the sum of a normal and an asymmetric Laplace random variable
ResourceFunction["NormalLaplaceDistribution"][α,β,μ,σ] represents a normal Laplace distribution. |
Define and compute the mean of a normal Laplace distribution:
In[1]:= | ![]() |
Out[2]= | ![]() |
Generate a random sample and fit it to the NormalLaplaceDistribution:
In[3]:= | ![]() |
Out[4]= | ![]() |
Estimate the distribution from this sample:
In[5]:= | ![]() |
Out[5]= | ![]() |
Display the distribution parameters:
In[6]:= | ![]() |
Out[6]= | ![]() |
The distribution can be used with other statistical functions, for example estimate the mean with parameters:
In[7]:= | ![]() |
Out[7]= | ![]() |
StandardDeviation estimate with parameters:
In[8]:= | ![]() |
Out[8]= | ![]() |
The characteristic function of the NormalLaplaceDistribution:
In[9]:= | ![]() |
Out[9]= | ![]() |
Plot the distribution function for a given set of parameter values:
In[10]:= | ![]() |
Out[10]= | ![]() |
The Quantile function is listable:
In[11]:= | ![]() |
Out[11]= | ![]() |
The CDF is also listable:
In[12]:= | ![]() |
Out[12]= | ![]() |
The NormalLaplaceDistribution is the distribution of the sum of random variables from a NormalDistribution and the difference of two ExponentialDistribution random variables. Start with the TransformedDistribution:
In[13]:= | ![]() |
Out[13]= | ![]() |
When the PDF is requested from the output above the full formula for the density is computed:
In[14]:= | ![]() |
Out[14]= | ![]() |
Check equivalence:
In[15]:= | ![]() |
Out[15]= | ![]() |
Here the characteristic function of the transformed distribution is computed:
In[16]:= | ![]() |
Out[16]= | ![]() |
Check equivalence:
In[17]:= | ![]() |
Out[17]= | ![]() |
Wolfram Language 13.0 (December 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License