Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the normal curvature of a curve on a surface
ResourceFunction["NormalCurvature"][s,c,{u,v},t] computes the normal curvature of the plane curve c with respect to variable t over the surface s parameterized by u and v. |
A sphere:
In[1]:= |
|
Normal curvature of the sphere:
In[2]:= |
|
In[3]:= |
|
A hyperbolic paraboloid:
In[4]:= |
|
A normal section of the hyperbolic paraboloid:
In[5]:= |
|
Plot of the normal sections of the hyperbolic paraboloid:
In[6]:= |
|
Out[6]= |
|
The normal curvature:
In[7]:= |
|
Out[7]= |
|
The change in direction happens when the curvature crosses zero:
In[8]:= |
|
Out[8]= |
|
Choose c1 to get zeros in the interval (0,π):
In[9]:= |
|
Out[9]= |
|
The principal curvatures:
In[10]:= |
|
Out[10]= |
|
The maximum and minimum values of the normal curvature are the principal curvatures:
In[11]:= |
|
Out[11]= |
|
The normal curvature when t=0:
In[12]:= |
|
Out[12]= |
|
The normal curvature varying φ (principal curvatures have opposite signs in a hyperbolic point):
In[13]:= |
|
Out[13]= |
|
The asymptotic directions correspond to the angles for the zeros:
In[14]:= |
|
Out[14]= |
|
In these directions, the normal curvature vanishes:
In[15]:= |
|
Out[15]= |
|
Plot the principal directions and the principal curves:
In[16]:= |
|
Out[16]= |
|
The normal sections and the normal curvature:
In[17]:= |
|
Out[17]= |
|
A cylinder:
In[18]:= |
|
Out[18]= |
|
The normal curvature:
In[19]:= |
|
Out[19]= |
|
Computing the normal curvature manually, first find the derivatives:
In[20]:= |
|
Out[20]= |
|
Derive again when t=0:
In[21]:= |
|
Out[21]= |
|
The dot product with the unit normal gives:
In[22]:= |
|
Out[22]= |
|
Another way to compute the normal curvature using the principal curvatures:
In[23]:= |
|
Out[23]= |
|
This work is licensed under a Creative Commons Attribution 4.0 International License