Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Nielsen function G
ResourceFunction["NielsenG"][z] gives the Nielsen function g(z). |
Evaluate numerically:
| In[1]:= |
| Out[1]= |
Plot over a subset of the reals:
| In[2]:= |
| Out[2]= | ![]() |
Series expansion at the origin:
| In[3]:= |
| Out[3]= | ![]() |
Evaluate for complex arguments:
| In[4]:= |
| Out[4]= |
Evaluate to high precision:
| In[5]:= |
| Out[5]= |
The precision of the output tracks the precision of the input:
| In[6]:= |
| Out[6]= |
NielsenG threads elementwise over lists:
| In[7]:= |
| Out[7]= |
Simple exact values are generated automatically:
| In[8]:= |
| Out[8]= |
| In[9]:= |
| Out[9]= |
Plot the logarithm of the absolute value in the complex plane:
| In[10]:= |
| Out[10]= | ![]() |
Express CosIntegral and SinIntegral in terms of NielsenF and NielsenG:
| In[11]:= |
| Out[11]= |
| In[12]:= |
| Out[12]= |
NielsenG is the Laplace transform of
:
| In[13]:= |
| Out[13]= |
A representation of NielsenG in terms of MeijerG:
| In[14]:= |
| Out[14]= |
NielsenG is automatically expanded in terms of CosIntegral and SinIntegral:
| In[15]:= |
| Out[15]= |
Plugging in a large complex argument after expansion leads to inaccurate numerical results:
| In[16]:= |
| Out[16]= |
Evaluate the function directly:
| In[17]:= |
| Out[17]= |
This work is licensed under a Creative Commons Attribution 4.0 International License