Wolfram Research

Function Repository Resource:

NestedKeyDrop

Source Notebook

Drop keys from a nested association

Contributed by: Robert Ferguson  |  Robert Ferguson

ResourceFunction["NestedKeyDrop"][assoc,{key}]

returns assoc with key dropped.

ResourceFunction["NestedKeyDrop"][assoc,{key1,,keym}]

returns assoc with keym dropped deep in the association.

ResourceFunction["NestedKeyDrop"][assoc,{{key1,1,,key1,m},{key2,1,,key2,n},}]

returns assoc with the key specified by each key sequence dropped deep in the association.

ResourceFunction["NestedKeyDrop"][{assoc1,assoc2,},]

returns a list of associations with keys dropped in each, as specified in the given key sequence(s).

Details and Options

ResourceFunction["NestedKeyDrop"] preserves the original order of elements.
Any key that does not appear in the given association is ignored.
Where a key is a list, it must be given as Key[list].
The form of the specified keys is as in certain built-in functions such as Lookup, in that the outermost Key in Key[key] is stripped. This is different from other built-in functions such as Append and KeyExistsQ, where the function interprets the key as it is literally given.
All key-value pairs in the nested association should be associated using Rule. Any use of RuleDelayed may cause erroneous behaviour.
ResourceFunction["NestedKeyDrop"] can only be applied to associations.

Examples

Basic Examples (4) 

Drop a key at the top level:

In[1]:=
ResourceFunction["NestedKeyDrop"][<|1 -> "one", 2 -> "two"|>, {1}]
Out[1]=

This is equivalent to KeyDrop:

In[2]:=
KeyDrop[<|1 -> "one", 2 -> "two"|>, 1]
Out[2]=

Drop a key deep in an association:

In[3]:=
ResourceFunction[
 "NestedKeyDrop"][<|1 -> <|11 -> "one.1", 12 -> "one.2"|>, 2 -> "two"|>, {1, 11}]
Out[3]=

Drop multiple keys from an association:

In[4]:=
ResourceFunction[
 "NestedKeyDrop"][<|1 -> <|11 -> "one.1", 12 -> "one.2"|>, 2 -> "two"|>, {{1, 11}, {2}}]
Out[4]=

Drop multiple keys from a list of associations:

In[5]:=
ResourceFunction["NestedKeyDrop"][
 {<|1 -> <|11 -> "one.1", 12 -> "one.2"|>, 2 -> "two"|>,
  <|1 -> <|11 -> "one.1", 13 -> "one.3"|>, 2 -> "two"|>},
 {{1, 11}, {2}}]
Out[5]=

Scope (2) 

Keys that do not exist in a given association are ignored:

In[6]:=
ResourceFunction["NestedKeyDrop"][
 {<|1 -> <|11 -> "one.1", 12 -> "one.2"|>, 2 -> "two"|>,
  <|1 -> <|11 -> "one.1", 13 -> "one.3"|>, 2 -> "two"|>},
 {{1, 12}, {2}}]
Out[6]=

NestedKeyDrop supports arbitrary keys:

In[7]:=
assoc = With[{dog = \!\(\*
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJxEvPd3HNeVNQoSYABzJphAggRBEMw5ByQCIEFkECRyIEDkBhqdu6u7uqtz
dc5IBHOmREoUSYmSTFmWJWtkW/bYcrZn7PHY87413w/vL3j73IL81ir0KlRX
V7j7nH32OfdUZbTLqrpmJiUljczFR1WbOlcub9NWL8E/tYMjPdcGO6+WDCo6
r3XKj7YnY+NV/MXwR+vxURFLLOHGZzTuisScWI8kXNG4Oxx1ROJ2bAxHnbQe
c9ESdYRjtnDEkhhlK1FHKIKF9me/crFDeeJjrmjCgR9Go65YjLZgnZ3LQ1vG
PIlRV4x2FhOj4ti4a3TMjf0jCcfomGdsXJSW8QnPxKT3+pR3YlKcvO67PuHH
/uOj7us3A6MTLlwAPrFIu+GMiXH3+IR7dMw5OkF3FIwIuP5wTPCHTJ6Aye0z
eYO86LWEwuZIzBxP2HGKYMiCW8Yt0L3EhGDEHAjz/pA5EDT5/CZfkA9HrDhU
LO4IhrBuoSVkDEd5OnLEgo34CuuhqBWn8wTMOFcgZPMHBY+P9/jMbo/R6TZg
sbv1LpETvSZssTv1RrPKYlWbBY3FqrU5tNiCBbu5PHqHSy84NHanDvubBSVv
UWAHwabGDlY7dtbxggY/x4IVwc7Fxz3RUTeWxJgXw4shwieQovGMOSWMcAvf
I2UPROwhbI/YCeKYGI55sULwMXzDcRfBB5jYxnDUHY/TDoAMOAI7/IQOHnMG
IybcO8YwnnACynjUjn8BSjwu4lu23S2Bi42T1z3RhC0UFuKj1sioEE5YQyG7
P2whgxl1wnLYGFqka8Y6XXDYASywEVswpN4ADZ3baxF9Av7FfeEssKJI1IYL
wL+xhJAYB9w2gBKJAkpaAkEzoAmErL4AfmXFtwSr3+wLWNxuHoNpdWrtGHYR
MHH4Fyv4yuk2Yfwdbi0swe01uD2mQNji8ePsBhzT6zfbXRj5EfoKW0IW2Ce2
SIgDNZfX6BANDpfB6tTZnJzZqrfYCDWsmB16s1WLRbDr8RUWi80QheuNipG4
JxR145NGOAF38GIdC1YAx+h4IDHmZ/4ljo57gfXYWGBszDc2GRod98WwcwQO
6MZKfJx8IRqzk3/FyHQxUACODbU9RLi7EnFhLGqB0+FQGHNiALg5DCPiCEbt
MH4gJY1tLI7hteNf3CYGNhgGiPARI0YVpwBAGFXihKiDsIvayJuiVvyEEITr
ha2BiA0jxiCwuGD/GKWAxR+0wkcAx9ikGxCLftqIccOeXq+AASfHcRqAgs2l
szs5uAb81+nhsB3j7ISbeDT4yiHqXF4DPrEDoWnXYPwx+B5mLdJ5vT4e15yI
2zxeE0ABFvghfuWEObmxjwWnw7Dg7HQNHjNAEeCSLqPFCX8UfEE7TA6ORngx
V8V2wWWyOI3SYnfxAAUwSZAxvHwAizCaCGKExyYBnw8LVsYmaGV01E9OJBHg
uDuRIHrEMDLUYNh2uAAcKsEGfyxBrBsN2yMRJ6NoVzhMWzDOMBj8EPTLPjHm
InNzO74lXiL4XPBH+kw44YO3b4YmpnxjsJ9RRptTuBJ2ebiwceLP2JhIDsiW
2Dg5oz9II0Mjj2EXLeQgQfJKnIjAwhIwwVPY6JlFjwHoiPAUn0n6BOX+i1Sx
Dn7DPjAwf4gj5/KZmNfw8CMnc0MwJLbDHoALDo7fwk7gm0CTaNABv9ObLTqT
RQvHsdo4Nv5Gm8hZHQanyEv8gEslM/NbHS6jw22G1TlEmJCJ+TjxLfwUizdg
k36CPTGwEuNhBe7DYuJ0WEyMWcmJGFNNh8UYYqU7FMNG8lDQEYsgIowtGLaD
MzFo3iARhS9g84coPkpDOh0Q447xCR/5S9w6RhFQ2uIZH/XGo67RuBNgIQ4y
OnUBLHyFLUCHLgYYxdxADUTN/I6oD0f2hQR/AB5qBQoSLhgxf4THZYheHq4H
AqRb9lvxlTTCUliXXBs+wtzExmKcNTaKG7ExJmSAeowYVbiG4NKDLUXRhJ+4
PWqvzwA6pXP5TOTp8DVCzQIQ4YxOUYMVnFH0w6dMgt0kMZ7NbgR2EgfydoPk
WVa3Eb7m8ZHv41LZAs53AD5ghLN7/HZ2DbRCkFFsNWEFCy4MCwZZcgQa5zjC
k4volEUWmBCcAncUCDsBBy1hGy4YqAFH7Int8UQAQwr4EmMeOBowZVxHnwAC
Xgx6xEYMPrwVIz8+6cfGWMSBMEdARMiEQGtEbmEg4sIQYSO+CpJVkCSgkQ8C
Jh5bMPLAFB4KLCjejU6v+wNG/ApRZvw6yIRdTJxoGSEbUJLACNI4A1NYNQaW
mdk0uNgoeRk+KUDjfmlPjCdZuPRD3AKuDeukBEJWsCVFVR8vjaEDPiLy0gKg
4Vl2h0mSIviKdvOasBHeBJPw+TnERAgqh5d+K/kRrAWEgFMDCIyzO2D1hJye
ECCzOtwCCMQXdAJTmwsx0WCykQHgEzbACzoirhhRIo1eRKA4MgpCc2Io3nl2
l2weQR9+F3UTNACUuA6QkX4DcDR6wDTkDGCgPGSHsG2GI1zSgbHCxfsQhvxm
aA8IA2YYVqdLGwjYYUsYKBwWqEVjVkaYbsn9g8wGcOrEOHyNVAS0TYT0jzkR
xSlsAbpsugZYEYIFfB8nJQYDcbGRxNDBKnC1EuFIi8s//S3CkGQz2B8jhiOQ
EwXJsKVYSdzl4YAvgRsgNLEDfoXfwhcw8ixOEXZWh5FFNz3FWYgWJntgMxgB
XBJWgAIQkQwGY0Lf+q04EXDBV0AWLikRKZGq0+TGyARgJLzLbZGcF1/RXXiM
VrcBpyMLcRnZeenf+JifwUchKRgR4VnQJBiWSNx34+ZoIISQYcUNkjWGRMlD
mVVbxKAwbcPEmbSO25F8FlZNrhTlPR4+CNYKw9cspMd8PKDEt0RHYSdWaIjY
cXDjJMhDZPNSfKfdvBamzK1sN1wA2Qx2hv3jCIAD3IK7I20ZdWM0cCUOMnuI
PQw1JAp+ZceNk6Jj8oAc0CeQO7iJ5SQjxM9xTD+xrok4ykccRYYXILVDWQOG
HXEtZMFd495xbUz8cxh5k00LKMlafOYQIx9cpER6uB5sRPxyOMmcCBFyWEGC
Q5Iodg8vUaXos9G3XhM+ceVOMgwD0KTwTVvoCBAtNqfZ6uDhelgAn7RA5wMm
8LDEJzgaxsrnIyPEpSJAUyLjoUGGNQJHkQ0C4eXQAyCcC6YLJgwEXdO84YIw
M2A3sGg8ZvV49dgZakHibRg2eAZDinun7MZulMyMbs1DygrDi7Ng0HBJuOzp
aO6mUPL9DfK4fTiX9K8boxp20F27ECDoFrCO4CJ5HE5q8/LSyDO/tkNKMauw
M0VqlTzC6bOIIil5MJubeRYtkPQiqSCAQtB7SdhglGyiyeEVrG4e42/3EBlS
tKJ1Mhu6HRFaUfe9IfEYFqdoxVcUAW06yafoRlzEijgIXSSToEp1v3xkQG9U
4iwIBBC3yBlJ/1BCYUBCwegaOxOazAERTPVEI3QjFvASGYOfZxzopHjqt+LK
cXe4KRyTGMNtpMu2G8SAy0WcQxfm8lPgIDPzkAvg+JL9wFNoTOj6dTgyorOH
HZAM2MVLQ033IhqZxVqArJvSbZvfT5Edww4qwFUBL1wMrbBEDBcsFRY44xAs
XMpSiUhDDonlMG44DnbD9fgiIH+K74jRgE+KcW7SnGZGRAarXe906SH1EVbw
L4zWS/mCUaJEZu3T6Rj4CvLGwMk49TXjSBsnb+WHmwX1NYt5wGJRQTpK+TtT
njr8hIZd0Eu6BfofQwe8aHFykv/iK4BIGYSdoMfZVWpZ/8A14IjQDxtGLo98
H0jREUj2YOjoUxphLNKFEZoOnkwdMCFGg5r8giQh4F8YZ3gK9iTmt2qJqXw2
FguQatklHwf7ebw2HBYHwbeSKqboTMTrcIsCCW+/naQU7BmWD5r1CSRT4x6J
gYEUMQ8L99LASmGFIGDiNkL5nYijSceEAwJfpsesjPd4iZEQPuAaUOkYbToC
EZTNQyoU1GGRuJHlyFp25fAjI3JkkuUek+Tv/1IjVgKOhggrQMfIj5iU9baB
C57+U/7ew1NDx28pjt0cOHi9f1+4ZRd/Za++/wq5lZP0qt/D8RY1weTiIDmQ
OEhUgyvBOkgVp8BwYUCgEBg30o1jZwKXnAuDAEBh2DZcEnM06SsjG2QTW+EY
grSA9ChnESkKIP8NhCmgSIyNUQIhEFG4zQ4XYYczIs5Oe0eY5A0oHW4rBh2S
p3yvcgVJYmHciMECNolqmFpg2h6xLwg3p6BAUZ6JDeJPEgwEiuijApQ04JL2
xkgCFIAl0bsk/1yMNqUcanrwv4+AkFXECUwngLvMNrWLqlsIH8jIiJosdo1g
NfBsnekKHjtLibY0RNgZVxKIue3GHkvb0UTPgQfygy9Mp15oD72vOfyaO/FM
eeC5+sh7+uP3e3fEWrY7ui/YbHoXYrEXfEVsbBNpGMFRuEEypCBsm6OUOeHG
UEhBmdGsnreqYFe4GOZWWJB0kN/hCk28BjQl2DRIJI3m6U/sA7JVaYdU2kGQ
JIkuv5UldwjrVP8EFhherID6gBSWINM5/oAbdwSlSsd0UcT3+uyELDwl4MA+
8C+sSzZAbiVSskz8iTyUiXOiqYBNivVOFm6IXpychHuY1WCZADBZnVpsB14w
S6NJLdjUkvJh2gkkbJI4k9BkykTyXHIf4nAO64CAYi6MkOqNdD0S9N/zPEcE
Dndw6Unze0zMtMgCAQFVVCJ2bBEGKz2t+6b69seat4avrJ1qTBurXTJVv/JO
y9pHXRtvd6y/15Pznv7EB9rjzzWHJky1sBZamAvjE9cPeQaqh4s5pk3UIqkI
inGCVgLOYBzRc3LsYDIrtIZhrWEEABlMKrVOptaNmK0ctqgMcjUnkyv7dZzC
aFYBOyCI7f6o6/7T2/6o6KVE0oYAhwXJCCxZilbwO6fPijCN28RliB6Kfcib
kP7D0kD1dPteCwxGElRMkEjEbmTJEY/kCPcCVrGyap7E4UQmPoukonEKnFqK
EZKKIP+SSJVqwgZJHRGfOLQ04CKZnBi02USSZAScUy/lJhLDgzeYQCJwQWtS
WYPsxzcdfKWCBvwFhIxAyVJ+C2Ilog9VJ0JUeQuJ2tBAvr8+01+90VuxxlGy
KFa7dKIpLViaGq9YMlG96GHbyqctK25UL5y8kvZsePdXnnO/G7vw0NcBw2BF
b0JKUsIUzkDdbiIWqtB6QSnkSpxJwfFKfAI1jV4OQzWYFHqzmrNQ9Qbci0HA
0HG8luPV+AnM2CQoAR9oBDgyBJUw0fhYEOPMCWqMORb8FqCzFSIZGi6fYGZl
cIl7zQ6O8q+gmRjJBkWtl0wdCFJBj4UPwc50u9sgiSiBRVLmUHQKkAARgo0s
EBcGtQYB4ACCDq3Lo/cFjR5R5fNqoWMhHnysYEjVYxCd1yyVkSU1gpFn2tUY
DFH5MUiZOJE2BUqsM13NSqPIiKkmT7mAl6oH0/lm1I0xmRh33bklUrLj5eIJ
551bXmjOUe+Iv2O/WL3WUrKML1oi1qSPNmVMNm243rw6WrbgdlPa057Nz6+l
P7666mHr0keNS++2rX2j2fe1/dSjvsyAbRjnAmlDxSGF9zBR5A/wUuXBFyTj
oZG0qjEIoEeXi+gaVgpPxAKwwKKwdpYqkh0iBEiOiXGb1kg2A3bTGxScUUX7
iCarSwp5rH7oNSLg6ixKk9kAF5OSX/gRBtPqBEVA4qpgOTAYaGberrO7VBh5
HBlnxGHxlYVpZknu4nQgBGyJJFxITKbzVqotkI2Rf0Ev+Tgkj5T/+g2iXxOK
gNC0okfn9bFqs59KSfiJFLDYLAwn5T5Sxo3BlzJllqroCbgQkb+U9Uxnr1Rn
puyP5hrCFlb3oxwQip0VG6mYKXooCSJla+n2Xz3irlotFC+Qn5g1kr9SqEy3
5KW4cmdfv7RoqnLOvda1H8h3v9efdevy4lj1wmeqXc8G0l/Icn5kPXW7dY3u
arnJoTOblRgo6FLwBk0SWWkyCJ6IFRAmeZZJDoEkWFUONqpwK/JKuCSvNPBy
rYmtwElNCpNJiWgoUHFVizgIHPGVRifTAVb9EFGWjzICSFBSLEgK/DaJ37C/
VI23O9Q+r8Yt6gWrAsEaFwYZQCV9KivpvxfPnCRZid98JC+RyEOuSCIBnz5W
O2W1GqeUgbqDVL2XSiIQSJR2BaikDIuVJgIoP8VZvLROMwIuA8KWlKMx+KBs
hUAUiSfUlHk6DrpIGNhcuFqOzTJQuCT3d3BUbQ7TVIWN6XCBkTYuHnwCHsAA
EldYFaKm3t6w135huaNonliaai2a270/5druGQM5SZq9SXdq5z1sWfWka9Pz
wey7LWtu1aSGq5Yp85eNt2x6JtvxQ1vBG9ORwGAxLBkRzWQacTg1MBKAxVuU
FosG3kSAOsgIwTlwNDgLCT/PdPKFQcZ2k6AwWhQgQKIpm1qSoBRVEcRFM6NK
iej0VJlxGo1UW9Dz8DIfKRCYsTSrxVJRDSU4Lo2PURYGFp4oguHDVNcFUlYP
pAh5rlR3dbktTr/DTUUSJ5Og36tfSS2wqruUL1Dk8jLXCAoYTNrins6gyQwC
EBI2KfcBcFiopkfuQ1yE38KqrTZaMEQOlwIrcCXsRp4b4BBrRJ9emksl53UQ
V7NF73QyXSfQtClY2uNR+Hwqj6iGlcIdRHO3s7+Qu5CmPJik3J/kzJ/pK5k9
fDS5fUdKd/oM497Ud7vWPO/O/EC2/d2ejIdtq9+XZQ7lpWfNS23avSRUu+pB
d/ZLw8lH2lyvttlsHSEGgGv79K5p+qI4Jdkz06KUXMMIo6wiHWZVYmniLDFO
9Xw260TGTBGQVd4kjyaZJOglBcLyL95sNyG0AUoMINXbvTrQNZW2fBwVljEa
4C4vB04D3cF4qAQXc0Itw3qhech/mdKTJkdYtZbKHcGgDW4Ip2MzLzxNmQWJ
03AZUgpDlBW1JEZdODiuCv7F8i8iZKtVE427yOncBlArTg0EI1Gqb+PnCBZG
07BglYMNgBFG3moFcDQvQIIkTsVnh0fDJvgoCkBh+kJUvqP0kyrYMD+d16Px
+RRA3OVBZq11u5R+r8ZjH+R7C1X5C+S7Z/RtSlLvSuJPJmlOzbq6Z0739iRv
8dKPdPufDGQ/Hd5xv31DoGqltiTjxNqlxTvWyI7MteXOtJ+ZMdGw5nrHtnjn
Xl/PGXGkToTTIZ1nY04m5NRJRsXMkgQYuZhDJ2lj+oppOVYypdghVV0kPiTN
QJbP0QhTuYzKXyBDqrM5zTgLgKBsThSYKHWwLMPo8FLJDhudLCLDZhBTkFxT
JUpEsk+p1jQFWdTQQmYmuljCogEKwELS+XYmyZhonNaizC+IgSXhbWGSBkGZ
1I57eoZaykekX9mcxD9EdA4aB6Juq5oaFWwAkZMGBDcFo4IVseqHjibKRYPE
xtJEGxOltDOl2wjodrpCKoy4zFZwi8dotQzo2o6pz86R700ayJhxbUOSZv8M
zaGktm0z2jYleQqXPhveGa9f4ypdHqte/LBnxyuh5D2+EEni/a7NtvzZ3vyZ
8bLUSMVSf/UKvnKDrHCDtvaA39QZDBhIXTi1bAoSl0dqBLmezab1es0kGOza
6Sjg1LHgZUYCQtHfQUNBs5yMoKT8SOq1YIUaPUUEp4Fw8VM1Biwqzf9K9VU7
CxMIcLwNqYTAY/BdFoQweC4EDCdoDWadBIfUuYExwf7SRCf1JESdrNxtZoVl
mlymPgFBwzJW+gTcBosKF8zyd14idsnScBzmqkSDNGcN03VPFx++n/SkbA6x
lVScaPAHpiv/oZAdUUC6x38JHqlqLQXu7xNJKjVQpZfSag73TkUGv1mv65aV
bxcuLFIfnanalTSSPUOWlazemyI7OrN29Uz+yLw3qn2vhzLfvbbu/d4Nj66m
I7X/0Hr2Y0fh86GdE1eWxyrmJ2qXPuzOvte33V6xrOvYsvPbV+XvTD937OzQ
8Aibu6S5GJpkocIv9Kee1BQyXxi5nW4wFHMkxjz4hPXydg15hE1nZPm+0Urj
BiVDFUuvlSSNmYQNNI9Kr9DqVchH9EaK5pKWA6zMNZBK6xyyanvHKVvnGVfX
OVtXkaO7xNpfJQw3mOUtgr7bYUMKIARiHjbg1DoCW0JqL3kfchMjr9RzQzpO
DleVorCU+knlXIA77cssFFLCSIkPFXUlIIhbGKASKACOqdPpCVwqgIsG1pqC
gxAjUZ8DTZ3rPAEK1jQhQnpV+rRQXAjybM7OSHO7AXXINxLwqWMR/dgY39tS
oixO95XP404kGY8lOc/O7tw0oysjaWRv8qXlMxtWJD3rzfzCcuBr4cCnI5tu
Vc991LTyR+YTnzlOPezf8bB32522DdfbNj8e2nm9aZ21dPFA3uKjWzZnbdib
nXVgzfIMg0EOawFqHg/POqCoxI27iMRcJD9Y+YhVJgUof6k9hlqhBD3GjSlV
FcvCdFL1T4/Uw6SCRtWZNEoOyf4IFuzAqnYWqRYnZdNm5TVXzaZYw8apqzkT
zVsSjZtilzfE6jLGm7eOt++INuWEOw6E+vJEZZPPw4lBB3URgJxtajb5glRi
BNixCoMC8EnBdzqpFzmk21SuB0xuvdSXQtT9PZFS94LXKDkdjIQFUxMiLOXd
QYGKUcI00OBV7E+KjjU/uFn9gSqrxD+clHcgUPqDBizINCGtgwE9llDQEA7q
ohHN+CgfCnIdF/bYKzd4SxdYz85AXAtWLIEDNq9LGt6V1J2R3LBsxlj10s+t
Rz7T7fyhOvOHyi3/Lh77VTj/tWbvjdbND3u2P+rNeSzb+1y1/2b7BlvZwvaT
K7dvzN6xccfGtatWLFqm0yqJA1mJm0oxrHmJwoeNY1NyVIWW9CHVhdxmSsAp
WdYzjU10xPJrsB8l/iZGeg5WhsLRQJhSAi4VVdhMCvUNekBKPRf8VetH27Kn
ru1+pDj8nvrEE8WRx8pDT1RHX5rOvDaeud+36+nA3keyQzcGjoZVNaJT7Yt6
Y6M+moWPQY3oWTQ0SxCA7jDOxN5WVjRDLu/QIAa5A1ZW2jJLn2xykGeI8FIt
VBK0cEAK4h69VJ0wsx686Xt0EoFTKKcJAhNsA8ocNu/zm6g/KmgKATKvPOCR
+X3yYEARCmj9fjUSTx+1IGog3ga7q85lL7HXZETL542VLzCfmWkvXmzLTx3c
kaQ7PVN1ZEbP1pnm4zMf9m1+rtj3i0jBN+GC14aDSB/e6A+QA3ZkPOjLftK/
+52RPU8GskIt6cPnN+bmbN6etik1ZV7W5i3gKBtTJqQkWc2NkSRZsoPdHcuO
yb9oAosM0gjqoN6DsA2mCOVmZgUZGjo4MmsOiSecUHdUHmR9jBTlRQ7BhSa+
EVYCHEKwvetMpHnzbdnhB+pTWB5qTj1UnborO3CrK+fR4N6XptMvdCfe1x5/
Y857w519T3n43sjpsOqSw9IPf0TokaZKSZBQdDOAH74vs3OUWjKqhxuyUo+W
AiWbjpGgcbJpQarOUZMPvEwvtV9CbU4TJqQmaxUjSxC1Xh+pVuSPwbARGPm9
qkjYGIkBPrPTrRRdQ5GAMhzUADufRxkIQALJw35FOKwHgk5xKH/n+v3L5pxe
N1d+duFk3TJP4Sxj7jxnyfKhA0nao0nGEynGU8mawzPdBbNv9267Nbwn1J55
vS/nHc3e5+rdj/qyxpo3Ipu4f3XDne7NN65tjnZkcXU5rflbjm/PyMlYPyLr
oOSUTRdS5yfLp2j2xMvslsqGOkmLsojAsZoMcklKkQCrN+ySJkqI+alPjKaz
p0WgzQCvhIAhzcmar7ysBwDhEtCPjflM1y5AVnmbs0a790727b09sO9G+1YQ
6WjjlqmObfevbX+pOvrGlPtaf/xj0+kfWHLfGE8Bx4n2vWFZuVOQkWDwC6wN
j3VCspY/DLhUkQMPmAUVsjM2F6b+Xi4ic+dYC58WdwGPI4KF9bLgyBYVk+I6
CFTs4HBrWVVBMd006waOxKjUZ0tdssxJnUBc7nRjH7nTpXb5aNYSCxB3iLpQ
XGitzts8a8ah5ambk5N2LJhjqdgYrZjvzk92lCxRHExR7Um2Hk0Rz80yHpvp
yktpPbBg9/KZxdtXDp3f6m3fdXfk4Ev+6Hjn1hs92U81+x/rjtxSHo8OnQgp
S3prj1fm7jdpukA+FNZdOougFFgHr6SupVwVviMNBdN4GqNVA61osVFVjVk1
VSrI75hg81OfgJGNhhbJGmzeZFbgtzYSsSqnXW0yKfETKfmFzZgtiu5zObJT
c/my5b7q1cFLa/3Vqz01q0P1GZHGjZNdWY9kB56OHHilP/mJvfDH3uKvfGVv
HQWvdRDYuxONWRGuGUNKUxJeM/UqUAcFUnLObtfZ3CpJJFudarebBSziDUsw
QtKRIqOb5l5BhpKMkXoApFKMxLE0+xM0YwdSBUwYuFnWg43hmI1JIHC1Guke
NoJOkfohAaQmatYqIHVTI43i1G37l83aljLzwNJZ21JnZM+ftWfB7JYDS8SS
hWLZSsPpWZrdM2wHkl2nU8zHU7y5s05toeb4pKSZaamzy45llu9cpSrPjvTt
8rRkJYaP3udLpvjzMcMFq6JaNdTKGXqlmQjeqpKG3cLmL6yMRZFTgIgQO+BK
VCs2q4wmtYmJFqrJgDOp3qWV0kmCVaD5TYogAnV9k6n7LGx2gJooQCagIGoq
JorjrCws+kMuh75PVrar9+T8wRMpshOpshMzjUWLXVVrPJfXxztzRru23Rva
+8pa+MZW9Kk573PL2R+aT31ipAmX250511ty4vqagHuIKgNUIjPB7CFFIEiI
Jax0R9DJNH3sUXvceurGDPCsnkaVNKudEnOBJb+AQ3IrgMXohRo4gY6LVb+l
ZkLWuY20gtqGCU2/Efl7JGqjWmiA8wTMMH4W9/WMqxU4soXrqdu/Mis5adus
5H1LZ2elzNyzaNbeRTM3JiXlr53rurTRfX6B+WCS80hS8GyS7dTM0bJ5rcfW
p81ZuHxGUtKMpLwt6UXbt+2atyRnQUru5kUl21eczVp5OGNJ0dETyLYoojk4
yHWEj0DYDZOTStM21hgAPRaNUoMZjQZxjkHKVala5WXtoCHkckqtgXSgnore
Sr1pGAvEIRatYQQLhk76FSXLTqobO5jyoQ43ZFt+mohHRAOgyv6mrprTrae3
tBxdfPX43J5TC2S5iy0V66Jt2fdHjj0eOfxItusVd+oNf/yt6cQP+BOfGI99
wp+6ey3HV77WU7fDP1Tj4gZElyExHkhcD0HqJEZFqeQrzaPBnJihKknKsoQC
+Aqs6oL7Ze1PVBSi9nXSWjRNQ13xYTNiPdWjwpIRmix0QKUgaG226UoaojC4
iz2noLp+MwZDopoz0nmnUTD0d+etO7N0RnpSUvas5NNrUvfMTjq6evbptOSD
qUlbk2YUbUl1lC4J5c+wH0jynUyyHElKVC/jz687smHTwSUrliTNWDJz5pFN
aRVbso/OXjY/KenI3EWdW7ZeWLP23NI1fF0T5aQBaoLysJ5D0sYuktBUrRWN
rNGI7poYxq4DEbEOWKsDab5VFR0de/HRS5vHIB/p0xqGKa0Gx5q10hMTUokV
G/VmJbUz2XVsAm66T4+1gdFEsyQ/BBcnzbvhFLBhrbq7u+FC4/H0ntMrRorS
zFXrA03Zo21Z94f2Ptcdf8kd/dh85jNn4Wf2vPcVe243pcVKFwbPLxu/stVZ
ulZXuE64fIjvLrWqu6JhK1UV2OwATU+EeNAmNcP4zS43NbFLE0/S9IH02Ajg
o2ZLj5HV2YzjY/ZowgFjRqgNhhBeNXBJu2P6V8CLM8sNvJxltVRtQLy4/2AM
cOMrmqE29QwXbejYm3xscXJW8ozDi1K6T6fpyjP5uu2asvSGfamnFiftmJ10
anVKz5455qPJ9sMz3KdmxerX3xvK7tg/b8OCVaVbcyp35+xZsqruyEldXq7i
2IHipau+HZZ9c63lo7aGTytrooPDGGFk6zgjnIhI0khTEhxPMxFYgUPBs3gq
ailBrdLEE8fTBMR09T4M99TrdHKvz27/vkmVsS7dDokHNp0apE4/np7KidlA
O8iMPH6DYFVEEi63l1rKsb/FosKQGoQRaZbQaJANdVS1l+wYvpDuuLI1ejVn
vHf/zYED7xlOvrHmfmQ9/cZy6rX24Bv9wS9dZ/9NzP/IcGa0Id1dOC9YkRas
2mDMXz1YnAkc3QhtYYGm81jHNWCi2RariiCwqWBajGnB+So47LQAwCc8CP+y
WzCzoMCbR3CFuGaeR66ksNlViI8utwbGIAhqOpp1BMhSuuo0WoVhl6zUUp42
eGSGNm9e/+E5zTnJ1ZtT1IUr/I1bwk0bHwzvtdZvKlmXfHLZzOMrk08snnl5
S7L8RLI2L7Vt94zBU7P0BQvOrJu1Ny3tQNqGA6u3Fh4+Ub5n/+CxMwdS58uO
HP9ld/c7l2o/vnz5eWmNSzWktwA1SgRItplp0oEzjzhESiikOUE9N2S0KHQ8
EvNhfIU7okdgqJ2Goh5oymDRaE0jGuMQ6BSJPBaaezKO4LCRMJV8XSQntFZW
EpGewWGNjjqq2gl6jhvR6ofguZygJTY2qmA/rKZqVMo6huuP62p2WZr2BTr3
T8oOPlCffGU791mw/Ef+kq+Dpb8ar/nT7St/fdj43d32Hwcq3pfvfinf93To
yGjjVlvhSs3pJZbqbf6+Ip/iimgdFgMGT4Sa3kEvkmiZFhsB1qzrs7BmZmoO
pBY7GKdTL+lSC0McgRUqFJkdGFXqosfdsYdlqIYG6/UGLQG/XtTUuxr3+y6t
c5cvVxydaTo9WyxZwBfPv7xxhuL4AtvFFebz8xJN63z16Q07kgtXJ51Pn1W+
ZXbFxqT+k/Nvy/c4zy+8tDGpKjOpY2dyx545ldnzzm9J2TU/afW85Wtmzju1
ZHV+ztbbTQ3f9A88u1T7YcH5l739kCvMDtWgPnySDmHFQ6hNSgxtOlaX0LO6
IlU5vB4dElVIZdYXqpN69YEjsMAnmwibrmfCBkIR6hCm9n4XBxFrNOugK1iD
EPf9IzNUGTPx7Jk1nkDHFhyEMylATWRCqm5NV5nl6lnx2qFQz6FxxbFHfMEL
8cKPIlU/n7z0p4et//Nq6Dd3m385VvHbW43fxMreHdg30bB1vD4zemlTrHZj
qHpTsGytv3T1WOtuf8sx89VzLssQTURaRgR+2GTst/EDLq7TqWh069o8mhZj
T6mlr9QyUOHStjgMvVau1y0MWbhem2WYnmhgLS6AHmmLi3pCKGLCE0VhMGxo
jMnORVp3Bxq2h1p3JNqzxlo2qE+nqo8me84vchbPa9o6c+hQqlC01FqyNHxp
Zax5C1+2pi5rdtmWGZf3zRs4teD28M5fTVX+LF74ynys78yS0sx5l/Yv6Tq7
hq/N0ZSsK1k3/8Tq1YWbt29MXbAwZZYz/9w7FRVftHd+53QGWK8m1SU8NJXs
80Fa2FjPM82nSAV26rxiM0dUy7JMz1eS7LRoJY6Vcg2SqSzzMpmJk1WaXgs9
j0a1a8EOajXCy6jmLDC4BQ0rm1PW5vJQwyfrNqQ2fuqp8NKVOFn5y2IaNA3X
WPryxMG8mKJgynDusaXgk0jVrx52/veHqv/9XPu7+62fOXM/Mx16b3jX/bas
u53ZEw1brjdu9l9c4y3fNN6wY7Ruw/ildeON27Un5slPrZSf2ygvTFefzzCV
Z3iqNgeq17rKVnjK09wXVzsvLLMULDWcWWLIW2IqXS2Ub3Rc2iHU5Rgrc7hL
u7i6vcaGQ6bGw6YrOw2V26xXdott+7yt28facm52ZEWq1/EFS8S6rbHOHTd7
t19v38KdnYNkIXhxSbhsoeroLOWJVK5goVixKlS31Htp5ejVzcGWTOslLJvH
e/d+NVr9pweXf3er4r+fd/7mcbvQtq8hf3vlmR0dDRWgfctIo6z+TOO5PSVH
dmRv2VhzIW+qsvK3CsUbg5oqhOzhKfaAoSDldPS0IGvEDUWouywUdSMlB63B
caQitrRQUdSsMPJyo2UEMR0epFD1gQkRQCFvlOpevVmNBEShhTRV6o1KHa8i
58JBLAqpK4/c0ybN5mhZ1qnxBd1S3s36LrTSzI4N2kB/FRmQS148bjj3yH3x
ZfjKj+90/umF4p8f6//zvcGfTlz5xFnwfGj3g+7sRN0Gb9maQGU6n7fcUpw2
1rg9WpXOnZwtlm6Ktuzji1dzuQv5gmVC4TJX8ZJA+epwTXrwUnqoNj1cuz5a
lx6sTgvUbfbWZvpqNzkq0txVG101mwKXt3ovb/ZfyvBWrXVeXCmWrQZe0Str
A5dWR+rS73Rsv922NVK3SXdulbdhU6Ip48nQvsnWjeJF2ENqvHrZ5OXlwdL5
tqIFhtxUT/mayOUlwcvLo/Wb4q2bnhuOv7CceBso/sXN2v/nvc4/3mv85UTV
f7zb+3q0XVZ7sP7crp6mcqmlxEGdV3LEbvJ9v9lhkseHu51WDdWgqKPYKDX8
swqhjnVLCtG4a2yCHuiDS1KHHpuqA90hGhJMRuQLw2qdDFFMox/CikY3IBvq
Vqj7VdpBrOsNKqfXzhozhoEOcopAwMpqGjy1LFqoNi41KJpZqxU1MlF/jgpM
Pv1UKaupUgrjodqXYO53cm0eVfmYUPk00vwi3vL1/YE/faj/02vFt/c7P/Fe
eKg6eLd7u6tgvvFMqunsPD5/oa14qaci3VWx1ZS3yg8IqjdYzy23lSyHu7lL
14gVaQDOXwXgMhP1GdErW2Kg38ubYw1bsN1TsdZavMxeujbemkP9t32Hr3cd
ABsHruDbjcA6UIsjrIpfSp9qy7rdnuOt3sKdX4ezUJ2wd9u9a5lTLZs9pYvi
dasfXU1/2LIqVrvceDbZU7nmZvvGybZ14bq0Gz3ZHzryvo6U/efjtr++0/4f
D+v+9LDpy7G6t/G6T6e6xKHCttI9PU0XqYkCYc6qR9KNBSSGxcpkvFQNoxjH
BBXreBSAtfRoFQI0xhBKRlq0+gHgotIMKGmRYQFYcmXviKpvRDWAFTigUt0/
ou6hb9W9WIfx6EzUS+b2cb4QFegY2SokxULq10LdiaywY6TigBNBlqceeCw+
SzBIbcACU6pULacOZ4PV2OW3tPi5upuepufj/T+4N/T1o4HPb179IFj7xHBy
qmmT7swc3clk3dGUkUOz1ceThw6kIMMa7ziYaNsBuovVZ3kr1nor1wFK14U0
eAQQDF/aCFBGL28aa8q63rptrCHLX5nuvrASO0eatk127b7Vt//OwKHJrr2x
pmxP1abApUx/5Sr7+UX+6hWTjZtvtuYAQWvpBtnZFWJNOk50qzv7Xk/W9Y6N
oaqVt9o3fzCc88Fw9pOezb7zqZ6y5VPt1Asaa1hzT7bnrbvg36dq/vZO+/9+
0PuXR/W/v1f/95dDf3up/NkT2aS5qvPC3o5L54ymYar/2LQWi07qhwE7SThK
xZPpyTImFCmWkWAegbDUMLfCotD0wq2AFCDDJ8D6HjhaACi+xadcMyhtGVb0
YAfgSEVR9mypVL0BUjRzYZPSfB1NEjETYkkZzeAgxx8f90/djMTH6SFrqemd
FbWoBVRqBgBjGLTdJk1jxN4Rsbc9jnd+MN79NNH3rqfmtvyIq3adMn+Z/NjM
gb3JfTuTu3bNHD65JNCYE2/NnujYffvaobGWbYHyNYHqDe6yNHfJclfpykDt
umjN+rHGjImmbVPt2+9e2zl1NQeeCHaN1mXFm7dNde2Z7Nw53pF9vWtXommr
pyrTU53O5c22Fc0bq18fr8+4dXX7jdYt+vwVspNLndUZkaatibaMG51bgNTY
lTV3rma+r937keHAR/rdd1rXRCoW32hdc7tjXaRu1d2enK8jpb+7feVvj5v/
8W77X5+2/OFm3X+/1/P/fqr85yfajyc6hi8dbavM5Y3DdreBtypNghzGTFmD
RS3BRy2CJDwU30/50UsMOEQxk1KvH9Zoh3WsWRQMCYwU6kEt60DTcQq1jjoM
sV2CDwvbRw6/U6h64Iwjin6Vrl9gkztOrzYc1kcjPGtwgoObJiccY6PWYMAQ
8JOypZl39qQPdc6zYsjEpJeeQIl7pIcsfCGBNS/pfB56XhgJCG+UmbXtNmNb
SGj0mhojppoxQ3Hw2i5r857h4vVt+5I7dqe07Uxq2j5Tnb/UcmGlr3Jd7MoW
OBcGfLQ+M16zwXdxpbVwsat4mffiEt/F5SDSUPWG0eas8abMmx05sSubvTUb
wnUZ463Z481bE41ZiYbNY02Zo41Z4SvbQzUZfOF8T/mSWO26eMPWxwN7717N
MRWtUuYuhfjx1GVE6zdPtWfc68nG582rW14Zj70yHP6h9cSzoe2J2sV3u7ZM
taRNtax+rNj3ZbTi7896//fVwH89afvNVM3vb9X+4/3ef74c+NOj7p89Ggzp
ytqrTug0fSZeTlggNmkH1Np+ra4f6zrdoFo/YEAeZxzWc3KdfoAjvxtQDDfr
adp0BPGOaUsV8lYqyFP2zbG5UWoTJaxZYyc1v1E40zF5qZMCJaKb8/vmPar5
uPEvuSGo286ewWGFRwRlmvWQxLDU7yf6HOxRPht7fpAonUroyHQENknnN4aC
XCBocrvUJm7QqL6qGmzgVI1cf5l1IN/Secw6kCsrzezI29J4KK0+O7lzb4rs
yFxt7lzb+WWe8lX+irW+itWx6vWhiyvEC4vcpcu955c7SpaI+Ld0lQ8ao3bj
eHP27b79RKRV68KXN42370BYBHCAj6Lkla2hhi3eumxEWLFkobd8FTzu6dCe
R727EDFlxxfxJcst5WttVesm27NudWXf6sy8273tteHga8vxT/kjrxU7nnZv
eSrfeevqujudmx707/r59cb//UT5fz5S/vlR86/GS/9yt+G/3un667O+X99u
/tX9rg+v9yhb84f7WrT6QQBHqBllFlbEJgh4Obbr9ZRQc8YhKR2DJuH0/fQ0
jZkyMugHt0sZDnF+H4FodepobgJ6hh9hBUaaBZZ6R7HoDDJs13GQpgpyZP0g
fBzg4itqUBQ0UmuiNIkM3vb4dYGQQarqA1/2cBk9yEDtEza19FA/mJMyGjbp
DOqACbGXb0CbISVRGo1yAzegVV3TDl7WySqNfRdMw2XDTSdHeip6Ko+175oh
Oz5Xc3IulzcPCEIZukuWOksXRWpWhStXhCtX+suXmQtTHSWL4IOei6uDlSsi
VzLgibErm6I16SFklHDbpiyITGQcoZp1+Iw1ZABNsTpTdWquA7+9sNJ/edMz
xaFHA7t9VeuHTyxWnpqnO7dQKF011r51tGnjWFP6zc5tL7njHzlzP+KPgEh/
YD78qXDoUV/Wrfa178h3/vFx9//9VPGPD4b+/KQDDggW/fWNml/davjF1OVf
3On48b2BiLZUOdiA0KM3DGJI4Wg6A1CT6TladMwBsWCjTtrBIMO/nElOjMqP
cKxqTY33hgGQJ/kmJA0nI3vQwCr68BOlmmhToemBegGFKrVY71VrB7U6OVQl
zdpbNKbv00bJDUU/T9NAdgOb9zH9q2H+X+ESC3sSljpVECtxGVI/v1Rw+Ndc
HiIpTYtYlBrVNaWiXTtcb1Y36oZqTZpOxcVM6/k0vmiJ5sxc4dxCd+li4OUt
XRAqWzp2afXE5XVYsecvsBUtchQvc5QC3xXe0mX2EkoxaB3eWpkWqAWam32V
a2mpWB2sXovgONa4xVeXoTiZ6rqwzHFhte/KlndVB+CGYFrN2cUDR2dr8xZw
xSvGWzLGmtZfb04fbUh/R33kra/oY+vxT8zHvg4WfOE59Uyx8373ltfckb+9
0/3P10P/+Ej1j5fDf7xT/+uJ8q9DxT9NVP3mVvO/3+v4bKLzrqNSUDawOWst
oIGepBoRbtymtPAjgNLEDbPtgwZOhgUyBgMC7Fh+JzcAPm4QIAJBuCfwBTQI
cOBkfAJBljjIAPF0Wz4UJjEqC7XQsWal9GCFiT0i4aW3HzhAlSYb1QSgXoJh
O70lZtKfGKeXHkiP4kqN2VY2Ycem83jqkPexMOo2sOeGDP/qC5Xe0mC2EP/r
dd0WY6fZ1GtsPWkpWwb14ihbTRRatMB9foGndEG0ctnE5TXX6zfcat44fmW9
v3KF8/xiZPGAzHVxsaMoVcibZy1e4LiwmKi1YgXyRGAHwnSUrsBu3orV+Dfe
sCHauNVStNhbuiJQvd5Xt/Hx8L5n6v03r2VDHQ0cTdHlz1PnLQjVrbt1beuD
nkyIGSiWV7azH9lPvXXn/SRY8Ll49kP+2MPBnM/E/P96du1/Xg3982PlPz8c
+fXtxp+Pln/lK/zcW/hFqOLnt1pehi7dMpU4tfUuenxPCEXZPBd7QJge62DT
WNTcYpKD9BDykNSzZgNqzTJ8756EILmeXG8aYsUWhTRpy9J5ldTXB6Kj2q8w
Mq2LhOnijFQjpcY/Xs6mAJDxEakyfPW8WQvEsQOIlz0pQ2ag01NpHSxKUdiq
onfjuPTS3CJ7iQd7woU9aQ5L8AUssVHn6Jg7EaP2JFim0yF38F36ii2G8yv9
DZuR8QlF84XCBeb8ua6SBaHSRYm6lTeb0t8Z2PXO8P5Y/TpryUJbyUJ8Os8v
FSuXuS4utRXMs+SmWooW+qrXwA0Bsa14sbVoib14MdY95WlI4UO1613nV0Tr
1k91bAvVZ9zt2/FMe+zhwJ5bXTnyYyna3NnGokXhhs33ZfufK/Y97sq4fXXD
c82hD0zHPrWd/ipc9ImYBzTfUx/6KlT6H086/g7p8uEwQuG343U/jZd/4c3/
HEuw9G246qNg5aT6mEdTF2bvN6P3SMToSeHrN0KsQdpArwSJWnw+K1SKnT3H
RF3NSKuNKoGKnMOs1q2gqo4wjAQcP8G/SE94QW6lOqqKfNmGHag1nZJuNjXG
JmLUUCkULlkIo95Xkap29PKNiP1f72YBSao1QyBhSvdYZztNi5g1//+cI2t7
41icRTCVXuxAfXT+6SdTPH6jL2j0eqlcyR4G0dqHLqiKV6jOrTQDlLKViG7u
4vnOglni+bnhsoWxykU3G9e9rzrynvIgUgD7eQKXL5hrKVxgu7iEECxZyOcB
wcXOitX2oqWADzHUmDvXmg8PZe58YSXJnovLQaqTbVtjDRvHr2Y+UR2+fS0b
VuE4v0KTm4oMJdaSNdW953310Q/kO9+TZb9Q7n5Ps+cjy9EfB8594ix4aT3z
ynL627Ga/3zY/J9P2//xWv635/2/GK/+afTCp678t2Lhtzcuvw1XvA5U3zWc
9ihrExO++Bi9XQq3PD3jHLDQKziiVGZnLwez2p0SL0kzuTQVa7VqWJeFAS5A
/QMiPTUAdKDqIfh9Xr3Hq3eLWuhMh5OYGQgCR4Ym+SM1CHlULlHF3gNmkhrV
qEOMvZONaSGp44imX1kc5KefNqUWX43EvUzxUs/2v2o1UiiUZi0FQc1mhSCu
lOAH5JUOu8LedlBRuHQkd5GhaClGcqIxPVGzMly+KFS5NFK+KF619GbTpncG
9743svdx345g9Spr8Tz4KZebbCiYYy1Zai9daD63wFGR5qlYC1XjvLiSK1io
PzvbeDbZeHYWlA9ipb14IcB1n18YqFgOl4w3bXggQxa5+X7vdritoXDBWDO1
iIx2bHswvO+FZu/Hur1vtHteqfd+yh/6Qsx94yp4IeR+7Mj99VTd3x41/f5u
y99fyP78sOP3d+p/EilGjv9Dsfibsdq3ker3rCX3NMdFWTExp1/wstejIfQA
snjCOX5dhKiD8dPTuwmb+3uRDzOG60Gdwgep19etBYPROwfcBnrOKMjTm6ni
jtEx59SNgPQyKxwNEpHe+uLlTPygUnVVremGdmKT1yp6EwJ7CRhL4TWsT4Y8
XWpNsTng10r2PKlMUlBEpyYVq5MTUetZhKV5LgNJKexDOhnYmZVmszS7aoDl
+LxaUEpQ6LLUZfadWiA/S4IwUJM2dnl9tGZFtGbZaO2KRPWS8csrRuvW3u/I
fC7f83hwV6Jxk7tqpXBxsbWEfM1SuAhoGvIXOKs3RJsyE/UbI5c2wD3hg3BV
c/48c8FCZ8kKe+F8rFvzF0Lcui+uQMi73r5lvGnTre7s4JX15guL8e/7uiPX
r2271bfjFXfwY93ujzS7X2kOfWY69BPn0U+dZ98X8t+4i/5yv+n3t+qgPP/8
qO3P9xqB4NexCz8OlXwZKv169NLH4ep3hYKx/n1+deWd+7G7d0K3biJNNmOQ
pQeRIONFjzEWd41P+NgsnpEKlWboT7lWO4AUEiZNvSKijrU3G8zWYXAp4Gb+
60ImbncovQE9jjk6bo/GLbG4DduRr2EwvX5dMEQvOmCtC3BGNZw9GmNPsFLb
POV0LueIwz4Mq0DMNZqHXB49EnxcktQwhgWMbbZJr0nUM8MTr98Kh2MibGnq
RgjsLT0cJ72cJBLicPCQtlJVsPzasbkgUkfFan/1ykjNitH61WMNaVPN6281
rb3VlHajIe12W+bzod2Pundc79jmvrTWXrbUV73aX5PmqVztKF0C+rVUIE3Y
iHwwWLPOWrSIL1wIpjWcTQHBIiCCTh3nFtgL5ppy5xrOzHZVpoXqN0SaNkx0
Zo62b/fUrLvZuR2B73b/jgdDBz7mj78xHIIbvlTvBY5fCIcgYx7rjn7sLfnj
gxag9peHLX991ILPb8fLfzlx6WcT1T8ZrfwyVv1CvPiIOxntyQlor9y4HXh4
P3Rjyh2N0dv8EP0nxryhsDka4eFKCIXUd0etdDpJkPDmYQfrcbU75XaXCsmX
zTmCrE0a/1iUT4zZggE9MkTgBQSjEVM4wEldJTgFPkGzWAEc+Am82BcSKO9j
aTvV0OwqAEftfA6tR9SKTmUsah6fcMMMaKrXNKxhLqnRy+GP0vNx+MSFPXo8
PjkZhPLUG3o5bpjFWZWLeJ7e6+hxK73Xjg6cWTRUsFxfmuauSQteWj/evI4e
j23acKdtw+POTffbN95qgBbNeNyb87Q/B6mBo3yFrWxl4PK6wJVNo82Zkx1b
ok2bXVVr4Jv+2lXeqlVC8SLzuXk0VXRmtjFvtiV3jrNgDl8w23x2tubELNWR
mcKFJVBBntoVkbbNia7t0eb08Y6su4O77vftfKo68Klw5gvX2R/Zj33CHXip
2vMJd+i5cueNgZ2feM5/d7Ppd7cb/v6s/X+ed31368pPRy/+/l7Tv1+//PUY
gmDVC+eFW6pjkc5dLkUta9oRwHhEepMejNXEuGM0Jlxn1a3RhBXuQ511rOoS
CFjpBVZxVyJqgXPBXxx2OdjVG6CmLH+AnkoeTQjI8QGEpHOgbZCJ0PscXGrW
e2CgJj32Dkb2JAL1eIP3aLKetYHhK2/AhLiMQ9ETeT6D16Nx2od9cNWA2TDd
Sz8iPUYKPWzih1Sqfrm8W6O9JtiV7OVCHIVdmr4kT2RlCp3X3mtr2T1SskZz
fpVQsTpweWPkyoZ4/bpIXdrN9o2PerY+6dn6qDPzafe2pz2Ab+ez/j1j9RvM
xcv5kqXe2jR/3dpE65Z7Q/snunLijZtijRtAj/7qFUJRqjF/Dp8/DwiCSy15
s2wFKZazKULuLP3xmepDM3iQamGqtXSprWb96LWdd3t3T7RvmerMutWZCU/8
gf3MN778nwbOfu068rnp4Bf8fpDq9e6cDxwlP7te88c7V/72Tut/PGn77nrN
H+43//ZB8y9vNv/bVPPniZrX/vIJ+WHf1WyH5gqcCwbv9xqhPbAOIoVHgMfg
PvQe2qgNzhiPWUfHbXCu8THn9UkXSA8o0Btrw8ZQhN4+SozqGKHXKHm1dqvS
7oRK7Fepe4yGAbttxOVUYWeyhPD0A7CImIBPejEdlD895OIy0LNa9BgXFBS9
So7CLlzSSf6IAAp/f/IoDFyY5jG62Bv/kMwCRCaVqe2K3jhBIorzeE0If4iM
rHFF4w3yHnOHpXGXrnKd4eIaXy1BEGvOmGjdPNGacbN766PBrHd7t77Tk/Vq
ZP9r5Z53+3Y+k+253b7ZmLdAl7/QU7WcMWHmzb4dE13Zox1bE23pOAKkju3C
AuO5VEPuHO3JZC53lq1wrpCfDHFrK5xjODZTc3yG7kyy6nSyrmCuunR1pC37
wci+Wz2Z4y2b7vRlvzAe/VzM/Vmg8Lto4Xf+Uz9zHPnOf+YLy4Fb3dufWc79
28Tl725Wg0K/m2r87a3L//ms77u7rd/ebv/xeN2X4/WvfGVT2hOO+i1W5WXY
LeIaLNnADXDGQWozsKtYMyTJSKddbbMOuV0KBCa/Tyu6VVB0IFI9J0OUAY6S
4ISqdIlKwtFNjRl6/bBUeYNXRqN6j0sFdRqEayCKCUqXU2FmHTjTsw82pdRt
grwAStIhGtTa/hFFl1zZi6yfOjoEjrdTpkBMKBporjnIzIC9R06SrCx5p4l7
qFCwPeU7vMZm09rsCtwC4rLL2Mo37+OqNpqrN442b74n2/1IeeCRbBdybWiM
dwZ3vxzZ+Wxg2wvl/k90B14O734l3/Nu73ZENHX+PFBuoH792NWsRNe2cGsG
gz4j1rQ2UI1kfxFfMAtBkC0zbbkprqL5wdL57nOp3PFk7fEUaFTFyWQs/ScX
BJsy7in2PBjeO9mefncQMubUW8fZrwNFv0mU/DZ45teBvD8kSr5ynbw3kP3I
cPaLWNV3t+q+Hav67VTFn552/vFpz6/uX/3F3atfjl35+e32l96L1/Un7A1Z
/FAZ9D8AMluGIEUQgPAJTEkZWgYDPnUirgdhRsJULubNMgyO0SjX6vpt7Gli
DJRXVNGDAC6FU9T4/BAhlIyEAvTyhMSog55aDdB7TeHdcMB4DG5rZs6u0Rqo
PC7Yhymt8CAxYY8zizoEMpVmQKHq4fSDLruSNY/Rs65ACr6ZiNGrQccm3Tg4
9fD79P4AD8aA39EcGevuo4edzSo4NS47CJYI0oyG29xubNhnrs0U6zfd7d/+
kZD/ylr4UL7/evfO+/Ld76sOvFDsQiR6NrT9Y+2Bz7T7Ph3Z86n6UKRqlebM
XFtlmq8+PX51a7gtM9SaEWlOj7VsjLame6uW2EvmCkWUM+ry5sDdBEJwHtKT
QOl8C1KMU7NArfLjMwYPJbXvT/E0ZNxTHnioPnqjb9tU99Zn3Mk39rzPnQXf
JS58Fzrzh0jBn8dKvvGefTi0/Sl35qt47U+iJb8YLfvTw+Y/POn63Tu9f3o+
9PNbLT8Zrfvl426w6JjqqK3jgMi14vatDvidgtp1PBqfV2MWBjXaPsAETwmH
+Mlx+9R1equwzakEiJyxHw4IP4XbYgf4IHkiJeBm8BU9yuFGMNKEQ0aoGjAw
vdw7xseiAiRNMEzci9/i4MOKPkQ0KmNaNDyvgv8iA8VQA2uW8hvoWX728Cky
EZA8vaoxJFBO6tYCNa8HoVZDhB+idIbnFRDJSFJgALQ9yAM7ei9uwBjw6gTY
p6ZJf2Wn+XKmtzHzseLgZ55i5M6PFIen+nc9Gjnwvmb/G/3BHxqPvBjOAY6f
6Q+9Ve36keHgzZbNI6fnWcpWinXrPPUb4UThts2BJiCYnmhZ7ylf4CpNdZXO
N+al6M/MgDPy+SmWwtn+skWB8sWOcylC/izLuXlDB2d27U7q2DvDcSn9xuCe
KdkenBQ++EC156X51BtX3s9iF34/WvjXiXP/db3km2DuY8W+59bcz8MXPvcX
/ObWpd/c6/jNk+7//oj73dP+n95o+nG8+mcPel5HLkVl++y9x+kpG3rExoTR
g8iHqYPToPcQg5D06fUyrX4AMLGn9eXwPgwRxgpMi3HGMDJ0zDTyIVKb8ajd
YVNBFgJcZBNMuiAFMLCqiJnNGdEDPjgFRltnHNIYBjlWwwEQ7BUuSngxBHAi
juSCFWd8iJUGHByIYAcyG7NCox+iZgB174iyW2eQUdnHpnY49Lh4v8/g83D0
6efAt9QtL6rAHqJbKWgaVTVZlstZQPD+0J4fuAt+Eih5YThzvX/fneH9L/QH
f8Afe2vY95n52If6/W+5I58bD7zV7H7n2lZz3mJtwSKhfKXx4nJbzZpgy2ZH
5fJAw5rg5ZWBuhW+6qVixSLLuTkEX8EsjhBM8V5cCAR9JbOdBcnO4rmKw7Ou
7kjqPJTCV6cFO7bGr22PXd32QLXvXe7we8ZDLywnfhw4/5ux83+dKvu/j2u+
m6x4bjj8gTX3M/+5b8bLfn278Rd32v7jxcjfP1L9+m7Hv91o+FG0/MsbLc+8
1f7uPQ5ZPlwPI+B2aumlzaKOPaqjBVViNEzmfgPXB49jJU2ZzSFHlMQWK70o
jB7bAZT4CpERyjME/wrxELHhqInl70gndVBBkkmILh2lBi6VyzVss8rxE6dD
Sc8guy0092EcgmTC2em5Eo+RqUc1dCxO5BFVGHxAQC+0CZlDAco7IFbB4Rw3
otMRV2A3/BwyCW4ehBgOgDzN0rvi6YWufg75DgI6P1QnryQEnfVZt/t3vnGe
+zZe8daRd713982h3U/lu19rD34pHP/KnQtJ/5Y//KHu0Kvh7a+GdgeqVg8e
m6UuWKjMSzVeWOaoW8OXLXZVLfNULA1dWRWsWe68MNdRNt9UPMeUn8KdTRKK
Z9tK5gFEX8lcV+FsbylNQbZkz+g9MUd3cZmncX2wI9vTsAkpwyvLyU8cZz4w
nnhlO/vDQNF3k2X/59Hlr8JF7+oOfiqWfDtR+cubjb+81/m7J31/fan8w7P+
n01d+dFE3Ufekrejlx9Yi52dOxzKcq9H7Q/q6d1Efl56+Q+9xNupgnr0+9VB
vyYS0QUgA5yUF+iNA4DMzA+q1NfgmFiB/rTwfT4PzRJSVg7VGiXxD/0J/R/0
60JBg+ij1yXBN8G3cEzqbRbkZrMSboUsPj5KBRl6eoi9fMzlIiVMQlSEExk9
bi4+5pIK1JPXPfhEKIQXIzcENDQv6VZL/VEUwXmYxxCsBRfvceuZ8Yw4rRq3
U49LEpT18vKtQkOOs27jzd7tH1kLvgyVvTaevtm3Z/La9oeDOc/lez4zH/mJ
mPfWePAj3d43+gPvdK1/2ps13pYxdHKB7ETq8KkULbK/6jRj6ULh4kI7vKx6
sa9qgfNiqq00VShOsZyby+Unmwpnm4vmWotTkVa4C2c6LsyyFM1v3j5j8OQc
U+UqZ/16sXkLX7020r7lpfXMl+Hzn9pPfKA7CH/8SfjCbyfLX9tzn9tOvg1e
gBb97cPOv7w78Ofng4APEfDLsUtvoxUfOAtfB6pu88W2nuM2cxfs0+PXUY9x
0AhJA7+Q3qCO28fIgwbhpOAuIy+nQqhNTS+djpiltzzRK1+YFoV7IirB7wJh
5HdAjXgMwwv3QVSFdiXcLfKgR4PdvH6tKI4AWSK9gAWyX3qAi/VR0JGD7A3/
9DoyHx8M2uiFISBJF5kZVQ/sGtA1nd2lB2RadbdW12s0yYjSI1Z6KM+mMnJ9
eproHIadOFwKeuuLZUTVV6uo2eFs3um+knG7JwcB6DOx8BPrqYeqQ0AQofDZ
yN4f2U9ASHxqPPhGvftDxfYH11Z7Kubaq1f0HU1t2Z3cfSxZWbDAXLlcVzLH
cmE+X5LqKV/kKkMonA89Yy6cA9SAoLlglrkgmS9MNuemuM8nW4tSuLzZDVtn
wAaE6pW+xo2h1q2GsuUA8Y768Gv7mc+9+V+Iue8ZDn/iOvvWk/vMdPI5f+Iz
30Vw5l+e9f/hSfevH3T+9E77Z7GqH4bLX/nPv2/P/yBUFdPm8rJKl0MTClDC
TuleQpictN2chNhD0DECOOn1XFTCEkbwL2yb8Z4OToTBp+eMbCOxoN7pkNtt
w163Fv5IaFpJ24BUQyEdsg+sIJBRacWtCohqCFe7bYjc06fHyENwyoavKjXX
kPFNN2mI1JBGrx9hhSDE4sGhTtlwl0x2bXikWzbUjcwd0VkqlcNhKVAG6Dl0
JnHpwQcqt/LDgqAG01IhKOpwixynlw1crZZX7RBbd7kbtt4f2P3adPzHYuGP
xHPvcSduDOyGKIUjfO3J/4l49gvH6R+YD34wvGmyean14sKmfSn1e2aVZyTV
70ruOT5bdX6htmieAe5WNIc/N9tSnOounw8W5YtSEAd1BbMBJejUlE+VGVtx
qv3cbPWJpMaspO7Ds5x1K6GFYh2Z7ro0denKSPeOh+r9H9lyvx0v/ypQ+KH1
9Ae2U09Vh983HPtmoh6ofTF26Zs7LV/fbv48fukDZ9GH3tLnzuLn1pInzrKA
5rzDNgRhiQEHwwTghmGiGpdDzlsGMLZqTbeBk5lNclZDU0FFIAbRm/FsapNp
BAv0idsmC3rloYAaTDsxzgW9Cqi+WEKAMYyNWsNBgx+KNGCCpIcuhTvjaMhZ
MPKgbmQQVvOgVt3b0lirVnaD6DDyCKw4PguvSpxCr+2HXKHpfk23QtU9MNAx
OHgVgCJbhP0g7EI4ATukmfiEpgoHLYm4kKCAyCMaAkGrRYlkEMkRpG9Pa/lA
+XZn4w7bpU0TPTnv64586sz7yn/+c3fhE+2RB+qD7xkO/lug4Kf+vK9DRT+y
H3vav95zcTacriZ7VnnmzNqcuTU75jfvSR7Mna0qSFWcTdEXpBjywJmznJWL
xIoFrotzrCXAbg62aPNm0Ffnkg25s7jcmaoTM+o3z2jeleK8nBZqy4p0ZMdb
NzmubPC0ZOK8r4VT4NIvAgXPdceA3TP9kU8CFz9LXPo0UPVZ9NI3Nzo+S1x+
x5b/vuPcB57Sdx0lj12lY/oCp/7KaFgfD6tGo4bJUYNR22jQddKdGvqgElWa
XigEnR56rx/qBShL8hKL0TCAT2xErIFPIcUW3RofezNDApo2ZPB7tIGABh4H
b5XejAqHZXOIINIhKE9II5aSDPYPdvT2dfT3dfX2t/XLugZkV3WGYRAmsZ9R
ybOeAbtV6fcqnM5BwEHCWNdP848WJdGjUwVf06iuCWY5AwuRl8pBsAFEQ4tp
COmkhR8xcUOSflb0NveV7URGz5etibdue1d56Avxwi8Sld/GLn7qKnyXO/ux
/ezP46U/i5V8m7j4xnJgqnGR/kxSx5HZl3JmFa5Pqj2wqObQqursWV2n5ijO
zVUXJGtzU7hzCHlzoEXd5Qt9lYtC1UusRbPheqBNJBdYRo4mjRyZITs8o2lz
0qVNKYiD0KLhqzvHrmbHO7N9rVvH+ne/J5z51Fv80nT6fe7QK+H4K0fhc3cR
EvaPA+U/Hrvy1VTLEz7/keE04HvuLnnfU3nHVhYxlj+MyiPeIdE24BeHnM4h
3tSHaIUIAiZ0WIc97hGs2J1yKAEsVPm0yy3mfmjCkN8Qi5hiIS1UiscFkTAS
9mlcdqp4Y+gQ7EzcoMnQw5v+v5q+OziO+8ySOYEgQICIzAQzQRA550gEIoNI
g8k555x6ckQkCCaJlEQqkEpUoiRKVLKCZSu4HLTyWrbPm+7Wu3t7e1VX9+e9
b+Cr6kI1MD093b/3vfe99+vugWo9MGJ4obGoDfAiOe9MbWaClQ346e4LNz3H
RLPTdDuiVWVzqIERFADUAzFJBxwSv08NnZ9fSSAvoBJghqnGjFKXUw74sIKM
Q09rIjhE0ZRdUHuINlgM4OhOJ5vKYlEAd6teLOw5o+/M9g/vv8o//cBa88n8
wFcrl767PvRpsudh8OJnSwPgwheL3V9fH3jbXhzt2yyp3DB5avPg0U1d+Zu7
D20dvbB3+NROfmO6+VKG4+J2Z19aeDgjOLR3aWrvwlj60kTGrbncKxN7on3b
ve1b3e2b7Y0bzDUbDVWbFCUbOYc3D2ZulNbuSs4dBA1fMFa95mp+yVzzgrH8
vrXhUagTEvqKs/4Vb8tbgc7X/RffioOGU0+uTd6z1d+3N74Wuvhmcuj1xPD9
5MQ1Zmg1rHx6xRQLKGEmQyF1NKCFrC0uOCChsYA65pckI4qFqGYhokzG9X63
lPFIIyHNtSu21RX38qLtyrJjdcV56wYTDirxd7wLqCGaGUxyk0mG1maxKQw6
vscuTEQ04aAaNhXqCls7P2+OhkyMVykWToZ9mjt3IjduhVNXK0KLqe8+Qtaj
e2/oHjkNxhx7Q5c0mEXBhbAvllSpRAYjGqJAoxEZdCKjXgQiQ2MRCde/pw4m
B6Y31alpOt1spuMhC21TGo1SnWKO3bBf07InPHb0hvDki6bKt3xNHyf7f3nt
0qeJ9tf97R+vDD1Z6Hk33PBuoO6e6oitfdP0mY39hza0Zm/oyt/YlLGpu3Bj
R8HGyxVpxktZ7pFMZixnYe4QOtoau+AGN/fqbM7z4kPPCfbfnM1eGt4d7tse
690a6tjg694AMgpPbhzZt3GiaJN3cO+K6OyHi0O/vcv74R77T89P/3hr4Pvl
no9DjdfFJ24pS1BLLwd6Pro28d7KxLKsbJF/6jV/52vRfvS+l5PjzwXHkrZx
xD0MkctBCEIVvQ4pPAmC8PKCe3XZA1aurdivX7H4nHzGKaaHsEJGZMOgX5mI
6ZIR/ULMnIyYFpPOZFQLjKJxsx8chHnwabEw9AAXqS5kDczFR9C6X+djVHCM
LrvEblUolCyTgYVhx5F4U9ccodg2s4oKwCgFrWBXTAaJTk9Wx4AVncxkloJK
2Mzh0lgsqvULxHRvQNQRDNJdvharHIwDQ1M3Zanwq94osZvlJAtupcOpNGs4
c5W5mqbdgaGD1wWnHpiq3vS2PI52frnQ9UWy9f1w9wcLA29HL77obbitOR+e
2KNq3DhStOnS0S2tmZvasjYAQfqZvnGgaKvqYrZ/5kCMe/yq/Bya2k3pqed1
5+8pT72sO/fQcPaBbP/z/IKrk1k3JvfemNh+k5X3lPAgM7CLW7xh7MhGRdOm
0NypO9aGh4GO755j/fHe+I9rbd9HKj62nbk6s/+mqvyNaM/jlYmH0X5mtNB5
Ke+6rvpBuPelYP+LwUvPJyeXPJM+lxz9AoJJrptRk+i5lWh/fq8G6z4/JW4E
fHQZwPr/sTAxPmMoYEVGgEaBrSv0fUTO+UX6eqKrq0wqR69/260fPp++qTJC
sDIBAxgBfSPz46V516BfDYHFONtNvObuMTZ3DiZTpeFr9RK9XiyX8yVygVTK
lUj5QjGPy+dweSyRSGAya+nGABddpUJXBXzrh4oaoFjqoml2tDyfR+10ap12
NbIPGiJB6aRnOuCgFpJul443W5qubsqydO1Lzhy9b6x8xNS9G2h4HCQ//8XV
wScrgy/72+4YaxLcIk3HNlb5pr4Dmzr3bcDSvHtj456NrXs3tuzddPHARml3
bkJasqyuvGNvvKkpf1pd+rKj9lVX/Zvu2nedFe9Zzr1hPPWq/swd0eF7ksI3
rCWvWCtfMJchQUyXbFG1Zbqmjs9LSn0TB9aUVe9Huz+bb//SX/65u/h1S+kD
puft+UuPViZe9HZ4J44EWKefdbS/EOi77e296e1f9Y7F/UqcC3L31SWau5hH
KE5655OOlCswgI8oXYtZGPTTxSC6hY+eJkaCs6/f3AJfN79oB0/RKONRPV22
CBkR0oEsTODNG/QPj+Dt0VLBxPm488VnAiGv1GEVIaBhzJ2pmAYqrRuS/qHZ
WbZArZOSxOkk9U2D+Ue6Co/15BZ155/oyT7YlpbXtKuwec/+ptyjbQXHWw+f
7jpTMXC+crCueeRi//jY+NQce5rFm1WqRPT0h98YC9PUeoKeeXf6gmRoaTLQ
n0r6EYtqtGXs6DZxdaa6OT06fuiepgLm86G95qGz9l1/y0fzvW/HO56zVK9K
T5h793Aqtkyc2jxUsLEzY0Nn9qa2zI0taRva9m24eGTbUFWhsOdEXFl91dxw
l+m5Zqxd01a94mt6N9z1XqTjsb/u02j743DD41D9O8GOF0zFD70VL3trXvO1
rSmK9QP7g+xTIfY5hnXaPX4sxjv/erj32xtD3690fBltfOhueuDvejsx+Hai
7614f0J0NiYoftbTC+e5ZutZs3VddU/BNy7OW+IRS2rOxBKLmuip26QrNUts
BA3dTrhELXJi6t9FIW47IIawheuODrWNCBaOpb4VM+6iTO0neoJWJKEMoocG
u6X/bWGXMQ7FclLrtnNQEpDK9ftRsUJTYVYlfkL9oIrwiPAwao28q+dyac3I
ucqRs6XDJ0r6D53syzrUuaugdXtO/Y7s1m15XXsO9KYf6Ek/1Jt2oGdXXseO
nJadeY1Y8os6ymsHWzonRyfYUrnEZqWrughBFGkjZvRHwGq3SMdP7B0s3MS6
sMPRkxcdPXBTeuaBufRlc+ldQ9kzhqrb5srnLWU31Oe943mc0k2cqs2yhp2s
0s0jhzZ3ZG5A+7t0Pne84QRvqE4tGNGJ+wLKxkV965qza0Fdl1RWv8Q0Po71
fLg48Cjc8slS78dXLn202PfBygSAuO9vv+NsfsnXdl1X4Z09ab6UY7502DRc
FOOcvSY+A9w/X+r+KN7+hqvuTX/Hm7GBjxYH3o923nXU+WdPRQQXVs0twG5R
24ROfSs0R3eL+ch5gm4kaMQLSgfoVsEwSQ2oh1MO+bWL87ZE3Jz6fgZ66p/x
m+ATwCzGKQPQQNlqV+EnvAREMk7fF2RYl0oEduzfahEB1khI5fPKQPB4FDHQ
ArxAwNRmehQGUIYSOl0WdDqTSeF2GwG9w2Ewm5VWWFOzWqtTanRKmVx9aZBb
WXf5yOmB3ENdewvbdua0bMtp3ZnfllbYsTO/Y1tO87Z9Dduym7bnNmUc6M47
3HnwZMfxc11ldQO1LSONLcOXJ6dFLacH926YOLxV2JQVGC+6rSq/ozn/rL7y
KeWZZd7hFdEZKGdwssDQtw/hfbpkY3Dq6DLvlLV/31x1mniw2qQYdRo5LqsQ
krKY0HlsApOgJSBrjqqagtJGhlv1jL3lrUT3B4k+dLF3ohdBovcWB1+LD72S
HH2a6V0ydV21ti9oGr3c835e2U1r+21rG/a/Jix6FGp7i2l52VH3qrv1LX/b
h5HOH24PfLF0KcI5pe/LiwhLl3StxrGTdzRVny91rTJs2HgYGKddYbXJMMg2
i5TylFdFfsOjjNDkmAUucTlhfuqa48ZV2E7brWue+YQJngQeJuJXud1iuswa
MVK7pNkqU2rajW4TBb74iRSGl2BarCZhiFGRvw0pGBfXrGEl42aHHZ8oMxnE
OoMo6MUnmuCpDAaZyaTSG1Mm1qAwWtRWhzb1fRf0Rd8+RoM3xkPkeGFy1Ar+
xMQkJPdEcTeUdnc+oOzYkduEZXtuS1ohqNqxNa9l676WXbmNO/Y1Zuc19p/I
EhzdwDq8WVqzW9dzMDBzekVe/oypek1WclV8+orwZBxgDWaJGjZOnt88XLTJ
NnzgNWfD6/b6wOXj7RUldU29Fzu7eru6x4YGJkYGR0Yv1zR0NlQ2qqarXcIG
7Wyz+nL9srH9BX/PK8GLdxydd1w9N2wdd5n+O8HBm8zwqmsoqu/1yjvC2p64
uv26pQfO5PVo99Pm2hu6uudcLS/YGu6ZquCNHzM1v1nt/vHOyOdrA5ZL2eSX
+MW8+gxr7/7f3Br9dLFnJayCCQFefreCcWu8WDwqg5Zn0c0iUISD2nBYs7Jg
XIrrYiEVKm15XreU1CciKgARh6XxKoA+xUZymAqPU0VP6jlV8AmU4MxSswWO
UYxKSCas9C1qSy68BTYjHlZHg0qPU4GkCThAQ6ioz00PWbjtap1eqDNQK4Sc
6rUCyndODcwViIxK8Dg0MLHYIa2nJtLhnYA74wFV1Rwed3jkcmvHeHvnWH3L
aG3TyPmK/lPnL50t7TtV3Jt1ADg21Z4psdVvN1VvNrRkxiaPaPsPR7gXEoLz
kbmzwZki7/Qh++WTxuEDkpbdk+e3DhzdqL+Y/6K9+ftbY7+41mubq80paNyd
Vb19z7nsnJK9WaVb08s27q3aklmbf6i1r7VFMVU/3NE0018bULYuaJqvGJoj
0paIosXBaw3L22OmvqBuMGYescoGlOxOk7A7oOoAJR9EBh8tjX68NongcFNX
84y1/mVz9Xu2C18Ga3641vvne5N/eJEVmD0oaU+bq0jTduY99nf/dHfySbw3
4RdjHIIBTcivp6t4Xh3jkfsZJRTV4ZJ6XNKwX7oQ1S3GTYm4anmevMpykmYy
KTb6tXSXmlsDWw4cHTY5dkU3wIQQQ0xQy3AI7FPaLVq3Q5lyLEqANR/TJULK
lQU945RShQRM2IZyB2OEkCKJg7AgoFYv1BtEiG84EhwPjsTjlmHnpLQONXBH
vSkUAo2Kp9XxsAeQEV7Im3o7VpxkRMmm+hl6XgmWVaEUV9cNZBY2ZxQ09dVd
WJjIvT57JMk6fk9RrO0qlPYetE2e0o4UcTpPXW46PNV6aKbp4GhpeueBzZ15
m0LTx75eHfv2xsjjxf7GiuoNu87vyCjetP3EnpzyvINt6Qdbduc37y5oBMGP
FjV2N9SdOl432F6tuNygmmoyzzZpZprkU60TPY3Sy83y2U69YMCuHhfO9rFH
uycvdWg5HTF1M5zJg8TYF7eFH6303bfXPvS0PmJqPnZVfxWs/vVq+1/uTv7P
dyTXNGVdeRuMF/e/5+/67vrYP7zI+vnKpZCLnRoNBRpQiFFAxHxuUSigSeU4
dcgrh1IhazhtYqeFt5ygr0+MRaBg+qUkTI4KqBlNIkQ2m1mCVE7uhdEHAkpk
9kTUGvQRcVxOOXZOOcKv9gcJdOw8GlDHgvqAX2MxSaHeeC98LzKd1aagJ0mt
SsAHxNfvvQGd7Xat0wnG0f299I00Ti18FOOnx9loviXmQNjBZlqtEOkeJlat
RcYXYM9mgxIrCPvnSrs37a3dmVu7J7+x7vz5+bkTj7ytz2suPLDWveZqDnKL
OX1VJeea8w/VFp8s764sbbtwoeVEfvXuDWOnt92Sn//N05f/7v6ch9+allG+
Jatmy55yLJszy7dhJe3U5uyanXurNmeWZhTW7z9cm5VfX1lc01TR0NPUeHmg
fay7ubOlsbqsFr+O9HbPjvexJi5NDV0cv9RVUdYy2dfmFlSvmdvuR8c+f0b0
5dOsD5I9H8S7Pw63f+iq+NBd9quV7h+fGf+Pd2TvhC7yy3bAnX57bfj7G6P/
4wH38ysjSb8c3szrksN+oB85HRIUcySkoznMiBHg0gWCsB1KBa7hV7CGWh79
xwcbzDk8p89HF3foSw88BhQ8DHwy7sQ+Y1ELlA0YgYnUT0OWUMCCPYBEaGRg
h92hQPNFSMEbiTJwsB69Qcc36sWQXyCIkVepeMiDSiUf0MDbGEzUMYFdqsPS
bdiBAP2PknDY4XHpjCYJhBfd1kf/O4Aetgr4zHTVXiccGhzblVWTllO7I6dm
d05jb01RYOLwW56GT2I9ny4N/urmxGvRqdz9tWiR6Xn1+wpqcgsr9h+uLz14
uDl7g6g+4xV73be3Z9+IDRWfrtmdW59R0Lglq2rr3pqt2dU7cut25NTuzi7d
suvYlj1ntmVXbMuuwgdl5jcVHmk9daqlsrTlfHHjmVNNhQeqTpysr6pq62hu
r6lpwc+mpq6Cg9VdDXUeYd2ate25wOD7a5yv74p++dTkp8meJ8m2j5jKR9Zz
XwVrfrwz9s+vsH98ibcgOA6TAz3/6ZnZvz6Ufrk8mHDzYhED7ApyOuW7IF2G
ACPQX+xONWCFWi7NO9ArI3FralgMsYARQYP+KfZ1+ifRi0sM8kg8mrrSFKVv
3Ud+jyfssOup+4F1ICbEMxgypx6RoOnKRNyCnXjsErRa1EM4SDf0AhegD3ra
rcr1CTSrlebHYIwRN4AXgLY51Gis60ghetCzh2YxE9CgJJBKEEDokVUHxcyA
H8VmddpVajXfqONOTk7vyW1IL6zfk9dcVlKn7z/mvJj7jLr4g2jPk8XR3z8/
p2Nf2pBemVlAECOq7MxpgNiWHy6aKt6emDvxXqjrX97W/uzqzPGiqoz8uu0Z
x7bsPLwjp2rL3jLAt2Vv5cbNhRs352/Ydnrj1nObd5/fkn52a2YpIN6WXZ2e
X4u35B5o3J1XlZ5fvf9YY2lZR+GhutILLWeKW7Jzq1pqW52ixquW1lVL21PW
zkeLEzR7Fu2hp8/s5Y/0J57Yzv1mufMvL0z+05vKO8aal0x1v7o98+f7wr++
Kftq4WLCwYkE9Rh/BAfIpjt1B8X6gjYHewnTshCHeJoXEwa0sFhER/+EKGJd
mLch/oOSQCfgUwU8svmoGU0Nykl34S7ZkzGb36vDnqMhE4YUBEcXczk0IBEc
eJChJoiNwUHqbn5dLKiLhDTIKXR/tUOTamFkXxmPFqBAIYGdXi8FGU0GocEo
hjBarHKYHI2WD5hUKoFSyQVnjXqRUStSK+fAXI1OgEhi1EkhyLUNA1C8HVnn
R5uKLZ15icmjX62MfP0U66u18Vdio2BHekFLxoEW/Ezf355Z0Lpvf+1I84V5
3ulntVWfLg38x0e2P7wkLTlWvC2jZMfekk1pxVsyLmzKKNuUUb55b+WGPRWb
0sq3ZxJkW9JLtuw6uyW9mEDMqtyWVbt9XzX67668uh3ZFVDagiP1Gfk1B47V
5x6qyMgrri2vtvKbEO6W1fVXVTVP25vvutpfj/S9HWp/5Ch/W3fyffO5b+NN
v78z+Nd3pA88rXfNDT+9yP/p3uwfX2R/EGq8GhJRygvRtQO7RYghRatC82J8
9N2zWKdrtQFVMqqej2hjQU08pIVRoS+vTlpTow1BU6XmASxLCdt8jC4O+lwy
sAkKiS5JOcWlAqHsVpnTJgfR6GsW/Nqwjy5FgXFULXYZUF5ddEENAA3+iDyC
LQGZWk19bT0wYickj4wWJQfOwpwge0JIATegXL/EHE+4F+ad2CASsvlSD4aj
Zhw2uiAlF4ty99elFda1FJ9ghg68ZKj5bGXsq5Whj69MdNY1bc+syzzYlLa/
aTepYs2ufbW79tUMd9besTY8WRn87tbsf33h+V8fGi+31wGUrP31u/JqdmZV
bN9Xs2Uvyeaugvq0/Ppd+U3wM1ihl/ac3brnAjaAyYEyp+XU7cquzCishQLv
KqiFj92VcX5X5umtO4+dPlasnaxdNbVfMTQtSC+sKspummpejw08ivU+Djej
Dz7xVvwy2fq7a/3//pbki+sTz9gafnlj4jdPj//q1vDrllLkwZtXrbGgZD39
BTwKeNH1ItdredArumPBQldtACuwAGWAF+IDWAP7CsSRIzCqC6lva0+1S3I1
NovcYVMiFwA1i0kGNIEX2iLZmBDak4G8pVMG/+/zkCehZwkDNEuQwteYjGqx
W2BkcZCiwtsALMgmDgCmCx9HU9Nerc0G5yNbnxddv3sf0j2/QHexYm+oTJTT
laR9cd6ykDTi7Hq6B6ClPaWnYxNHP0n0fbM29Hd3Z6PSrrR9VemFjdDDXXn1
e/Y3o9Ph575DbUUn66zcxtfil364L/63x+b//aHpvm8oK6t4W2YF0Nm6+3Qa
VDT7wu6c6u2ZF8Cv7Zllm3edIgndfXrzzqMg4/a9lRl5DZn5jXvyG/bsb9hT
UId1gJieW5NFrrgRxDxzss4l7kS6X1ZVL0rPL3BPz/PO3jA0Ila8G2l97Cr/
mKn84dbA728N/dN99h/ui563Vb/hrP7FlZGfL/U8tJQs2sf8bq5BOepxiRHQ
LHoOVMjqkLsZNQYBYEXDaFJG4JuKYyp36ppFLGFZSNigk+BOIkzhLh43BANa
t1cPssD5AJFY3EbiDP/JpOaZnalH8q0K2o+bKAmKUZa3yWxWsdkoQcujmRmX
jiZjXQqUjcWoSDlVvKRE3jdBNk1iBEOrmRQVVUROKWgJR+iOcbI3DiXps0cS
8gi8di40fz5hQGxZiqljAbnfp8K5NLeMzLSUgIDfXpv64enJP92b5Q92bc+o
zDrYgIYFBHfmNcJP0oDnVaZnV0wPtz3l6f/uBfm/fWD8r0/N//1NlXiopb66
s72xO/tQ446sql2ZpUgWm3cW7dhTvnNf+a7s8l05VduzyjfvKQE3d+dUZuZW
Zx1sAna7CwjBjJy69Nwq8HFXTsWevOq0fWVVpTUuSXtc07KirY8Jij0jOa7h
gii3+EV3+5uB5veZxs/CLT88PfLDrcE/Pjfxp1eEr3ib3nJXf7s6/P3a6If+
uhuecaQtePuFpDkcVCIgBBh1LGxeXHDRPWbL7uVFB3wpwMIfQTqACJODzTDI
YJbbJUtdJFJGw2CiGmkR7Ww5CWQNyTgMj5YcToxIR1rq1Phdqr/N9njJf0Jm
QVWCzyxDlAO+sChqrUil4cnkLJ2ao1HOalVslZqrV/Ox7nJK6XIzsItaYmFj
NEzl4XbIbRY+Doa+QRq91a9MRM3XVjzL8ybUJFoAPg6HDU+FRj880O+Yrvxs
vu8P9/i/vTny5/tc7mAfTEvekTakDCgnUIAV2Zh2YUN6MSh2tKh8hZn94U3L
v7xr/K9PjP/3S/u/vK3840P1f/uQWWLkx47XpWXXpBVUwqIAu20ZpdvSTu/Y
W7ol4zya4La9ZdsyiremH8/IubBnX8mujOL07HPAd29u5d78yrS953bvPbEn
80xLTaWe28iI6wKiC56JImt/pq4nzT1x+GlTy5uxPmT2j6ItXy/1/ebW6O+e
GvzLS6w3At0v2xt+ujfz5xdmfrw5+MEqO5EwLiGww6XE9ORJ3GJUrz+ogVdJ
DZce8RxZHhsg5dEkjF2CAcGW0CWIYTJE9xCGkM2DakolDiGEzu2UgK0BRg+W
kQjb0ArhSFWIJBRbnEqzSYCMCcnFrtDF6AsWfCr6tl4pSyabUyh463EeMRB5
HNyEetNNxX5bakZdjZCI5G6li4Ziq0mMQ4KhQgONR0iNobH4FOwNXQDdE/sH
tc16yekzXT0tTfcttV+vTcAJ/OkuFwhOtNXuyarKOVCbd6BuX2F90anOgYHx
i/3Dp892ZBZU79hTMj3c+7P7qp8eav94n/OnB9x/f6T61zck/+dTy799xjhV
U9n7ytP3laZllaTvKwOIu3PLwFzwDjjuzLqQjhaZcX5b+iksW7cf2bjtwI6M
c9t25m/ZnLZjV96WbTn7so501peJp+v0s3Xa8WLb6H7Dxb2G3gzTpYJrhsY3
oj3vx/o+Weijr3y/0vvd6sCfn2e9N993x1z/x+dZP9zo+2W09je3p28kJGG/
OBJAzhJ63DLGxV+MaQMBecCnAGp0ATesCnrl4A4GCiNvNfGBkd8jDPkkIZ8s
4OHhLV63xONU0JNKCSPdTBjWIAn66TkX9DgILA0pxnOdbka9QK8VghSAla60
2qXY4XqUkMvZ8JAyGQebwZQi7iXnnUh8Xh9dcF9a9oXCFtRJ0KsMMSqkEvTf
1QXbtWXr9RXH6pJ5KalFXakUbLWSo5TPwaDigBEzISMg6fHTHbMXa97x1v/0
qvSfXxX888v8v7wktAsH+vr6JgYvctkjeg0X50i2bd4IweFxWYhv+3LKRlpL
7vo63k70YRj/84npf/8i9Mubl//zZ66E/XJjPcW9Yyeqz5xqPFZUe+RoVfG5
pqqKNoSF88X1xefqCvaX780pzSqoyimsAda79p7btvsYDMyWrYV5hedOHi/v
bKyfuVTPHq6WDp7TDxYa+jMNAzn2scI1edlrkUuvBzo+WR78xerQz+cvfn/t
0o9Pjz5Z7n/B04kK/O2Vzif2M79f6/3ieROimcdDkyqQoFBAATkF10AQZASH
jYsWSROnjBJqmcrmiHhy+BCcLFqY0yHzeqWwNAsx80rcuBBXo/eBmygAr0vp
tAjcVq5FzwIBXS4RVNdhJaxBQ6dDYjMLIIB2mwg2GC/5vDoQEAjKFQKpnKPX
CnR0+wTFBCyIDBajSKfhAhS6rG+TJJOmG9c8N697IRfJuJnu5Anp0CtTe5hT
KTgy+QygRM/1MPTUW9GJ5tG2si+emvvHx65/f1MGRfr7Z8fuxWYtVqnHLrZZ
uJGAAunJaxdajDynnef38AMugYg3MdzVwhupZ6St1xSl39xhffmSZVHb+/IS
y6ye9NgEUs4ge7R9/FJHV0fnxe7eidFLk8MXp0f7Jsf6Job7xkYHOzs7i47X
HTxUf/Bwbf6h2oJDDfiZsa+s8MC5s6crLhRXNVWUD7ZWcHvPaoaPagZydb25
xqH8hKL2QWziZW/bq+5GyP6XS/3frV367a2Jn60MPloY+emFud+u9oODv7vS
/Y+vyV68Bq+i9LsV4BTGH4qEOg95VNBGxiMO+AkUABr2KQNuYdSvACVBOqAc
YhTIBX63FJ0U/S4a1mIPPge6FXYlwjg7TXyrgaMQTYS88mhA7GfoYjGGi3FK
vQ4JmqlOM2PUsTEOHrvQYRaoFXxIKGId6CNTsCGqItG0QDQjkczJJLMS0bRC
BmjYWAAloEl5IVBbBOdstaRioArQ87RqvtkiAsohRo0GHfZLr8wb21q7B5rL
vrh5+a/vm366O/GRt/Qt49lXXe0xL/oCzkjGOMV0Xi4Jyg9viYekSzFV1Ccm
a2Sb89lYbu1Y1DaV9PGXIoqFiGJlXnt1URtihE4z127im4x8g5bjtAh1ijmj
josywK8uh9jnlfHmxqsr2woOVgPH/INltBRW7NxzPDen6PDB8hOHz9VfODfd
eUbcd0w9ckref9g8tI8RVa9aum4Za26qyt70tvxsgS77/vrmMFL8e8vTH19n
/3B7/NdXun691PH7Z8Z//hTrrSu8x/ecN1at0aA8HkQ3FDIOAXxdwCvBr/AD
cTh8MgYa+AecoJtCnzLiFwMvIBv0ywEfYe2VW3TTGI11q0Oz2UEtvCtcBHwL
WpJWM2e3iJ0UFdV0lyBDt1h7bDLGTYoqEMwKhTNi4ZRENCUVz0ilXPpVMCMW
syRS/MoSi2eAI0EpmRXxp2F4gKZSnjI8ChY8j1bN06hZGhXbahfRLRw+jTuV
XLxOwdmz1RUl596/yvqHVwS/WBt4Eu16l2l+Eml/xjeGaoz4VT63yO0UoZYg
PgG31GmZcVlnGSfH65gL++ByOUBzOa5eSijno7KFqGw+qsCSumRD0x3gL3BH
oSYj8uWkNhlR+NyCWEAJWcboQTq6OnuhtAcPVh08WHPgUFXe/srtacfz9xcf
2l/SWFraU13M6TvH7Tkt69uvG8jTz5QElI1xcZlv8shrnrbPE13fXhv81bWR
zwItX1+ffBAe++45/jcrvY8tJY9dlc9xC19RnXw/0P39Q9/tVX2QYeNIwowC
EZuu/ngVwDEWUsGrgERet4gei4jpVhf1jH0u6BFdveKi+wxhDgNqi4nrtokt
5C4UaHPgSGoaU5O6E54SpdUhNZhFqVYoQEbAljSB4KULlPQNUQ6pXsehbihn
I9esT41KhYSmUDgFZEWCSal4WiWb02j5Bp1Qq+bo9HxIJZirUHDAULxXIWOR
imIbFRriHIiQ2ozb1tx16NDZt56S/Ov7+o9XR757Sf75St97wcYnV6aCbj4q
1ucUYsBDXrHXzncaOYyd7XdyQUC3jeWyzLktcy4TG3/02jhIK3AOyNFAMBGW
LcakER8f2IUZicc+B2MQZMTwCbAWECifV4KUHWSkEb9manzk9InaA+Dg/pKC
/aXpWaezMk8cPFBy5ODpprKy3trSoZaT/ItF3J5Dwr4zjOriirPPPl60JK74
dGno19eHv1nu/i7e+v1q7y/vCO64ej5fHftqAQLb+5Gn5rGz7nGk57OnOF++
5o/4lFA5n0sWi+gQE9AEoQypC39wO1KnXWTRzpk1EziRxZg8zPDCjOzaFQdK
MeiR2a0CgAI9IYvooNwBcsGioPfBdrpSd4jRYhWRkzSI0N3UGp7BKNSnribE
oqqITwrcFaqp1Zj81WcYnYonEEyq5DzgZdAIjDrECoLGbhNCpWFX8NNo4EBC
oc9AyqTnQVShn2A62jR2ZTGSn8GreOPkcN/799TfPD1zS3rhzYWxnz/Lu2dt
e84/GrDNwoS7rPwgTtDMdVp4GH9AE/GLwn45ChiY+px89HSPg9CB5gBBQIPW
idPHMUOaoKvLSU0iBGkiMvoZLErGJcRuHWauzcjFXzCSPe0tJefKjx4szs8t
3p1xLC395O70o9mZRwFiY0lJf/O5mjOn4YFG2spEE82iyUY9uykqLn3d1/3d
jctfJTq/iXV8Ha779erAOwtTC5rWX9zm/v190e9ujT6rOPv56uSf3g++fdsa
ckvWp9HmowbgxThlDqfcYYdvBy5CYOSwwVTwcEg4PFDS75YjeSFH4MQpR7ig
sVJ4nqBPBwQpeiAqRuh5MRhUimape2zgHxDY9Xq5EYnALHfaValLEjwILL3d
K0FzRJcUS6Y1Kq7BKLaY6dPRpOBCaW7BKYIRAnBYcaEeTEKqHIMQmZGmEbzQ
ZEQVBXq62ysHlCgqk1koFoyHHByHZEDUeSImbVj2spyKSy7lcIQRYuRxFsmw
Bs0dKgr62I0sl1ngRz6yATu+2yZiPGgZIiCbDMljfkIwluqYIY/I7xH7nOCd
DGJFUxwhbTykh2oF/JLFuDriA+ISoA/TaDdw5cLLfPaogDXa3ow42DA3PtRY
WX4wr+jY/qLD+45n7zmWl328IKvwwN6CE/tPlp8+JRsqvuvq/ubW9Bexzs+9
VT/zlL1rOP2+p+7V5NSTm6I/vmX9/UNDRNryMDHx9m1t0Dwd9orjIRkVkk/p
d0mABVyH3c532NAgFJBQ1DNIhOJ0wLNZOdGgFBLE2CVgrs0sgooiDOLcITVh
r3AhplxJaCA4XocI7hSmFBHbZpcj1IcDBlgmn1O5mDBgb+it0EPonkrNho1U
Slmw9+D++nMxNJ/gonGIh5WgFewKaAvU7A4ZXaM0COFtVGqWGn3WJnLYRTar
kGA1C60WAX6lwOJBT6d+R3LnE/mdfKdpNuBFq5KDRPNhuqUZ0SkcklNn98rR
CuFtIIPo+3Hq/jLAgfLG9kGGHB3xyyF02bhgGeMQeRzclAuS0fNf6KReicvG
lgkHo17BSky2tqTyOqg9oVQwvPMRdEwhmqzDwFoKCJ2Gy+P9jXMjHZ01Fw7v
Kzyae2D39rQdm7fn7s4ryD5cfepISN7w4dLoW+7qdyylb6hP3OUWrE0WPDBW
frwy9clzmttx6YJHFPPwXIYZlBz6NeIe/dMEnAVKKKYPgVAeCTo1bBVaIeJY
zK/FWftdAo+NRzbSxrebeG6bYN2aohTXrxcHXPJkSIkRAHMBHxFBz0kE6dzR
GZcSVsDhsnB8Lq5Fe1mvYcOoKFVzkEGwBlxGfkEZwzJBoyDpqB/IkUo+DT1E
u8Qe1uflACVAp8aqE0GTUQNaFcug52JBZkEPwmH7yHDCm4ngvlIGjAe3BhzR
sxgHnQJ+4lVy44wU5QT/lgjRrSBYxwrkCAcAZgHihbgW4WtdcxCXcC7YOXEw
JUcA3W3nYYHlJkDdYuwZ4wkaeskj8eGO0FihyViCXnRPFIMg4OJChG+vGa4m
lVblqHimb2aktb2u9HjBwbzdWft2ZXH6K95bm3k30v3AWPaa/sJ9xcnnZSfv
60recVV/cfXyVy/ZVwNiZB+cF8YT3PHZwSChx0qNGyW0EFFa9BM24yTaAd2d
xSigJw4zH5UGmLD4XSIcD3RjZYHmpcGp5YQ+EdHMR+l2C+gweiiSIN1ugTTn
EIPCOPegS7ySNFh0PL+LZlwNKs76JAw8qjs1fed0y1xO4ibd0eFRguApz0kL
SGc1S+iqtEvh8sjRLg3qWZMBtGUTMS1QXSHKwKCdM2pmLXo2jhYLxhwDjsID
TKkak+NMnWYYFY7NyEYFUj5iZDgXbIOTAi6oN9gbOlPUcFieIiCZBIiq3wnL
KqbRcIFNYvwd5EqEsZkERQJXA00m0KNaVDUqAb0Vu00dgAj1A85StXulUb8M
4oDagImNBwXJgAhGFytA1m2aGultLso/cP7woaj+4quLMw/D/Y+i/Y89Na+o
Tz2nOv9+uPvdRP+fP/Dev2GmA3ZJYLoC5J2k1LshoW6IA52Ow8QxaVl2oxDp
OxbU4DDQ1hfiepp79IphaWyGWawwTjb+jhPEeeGNOE1oGt1A5UKnE6E3AQjY
DGKHTYo/GhTs+7eTD+/P37xqdTkl9LUkMfriIIdTDXLBZ8K0gGtmA8jLAzqQ
WWqLei52AkEGxFhRq2bdVunaonsxagELQE+rgYuPQ6kgjZrULIQ1Z0rb0QLQ
JekyWVA1H1HD7Qe8OGvROptAcKNm2maYc5rZVv0UKjkZkS4lEQ1IXcFQl5mF
YfE6ecgmeBewBoKxkAxnisFJTaqLHKY5NFCndQ79BSWB3gGLC0piBaih72Az
ILsQUUNOgSkOAOMGHEnxvBKQFE0Zv8aC6Ln8qE90fVHjt8/NjbSNdpV3VBQt
qNveXRz95hlugnshyT773fPiXzywPzsvuxJXknfyiOEn8bluC4oKXUCKQaAv
ULWJoQk4d9gGnCn2n6pVBXoBzBg+mqyXixoK9ASKijyLMQd9aLqS0Ucj9OS7
l9EANewNZgPsgDv1MEq0KnwimRb1LEYeZga+1Gjg6TQIC3xquHYxdqVWsCSC
GYlgEjkRC1oe3RVpEekNlEq0Si7S6JUFRyKoB1mg1RBtswmRX0BlA4X00KM6
OPhQSA1lSEaVqHaMfCqsaYMBKewHyhXnCJ6adbNm3ZxZxwaUZJy8cnTMCIOx
laFuARaNjItPncKLsxaReTZxzNoZq37GZGBjfOjJIIcA4AIsDCYsH8YEIOJd
OBi8BW9ECQEjSGuKegq4HXq2KKZK/VQuxzVLMfVCVLIQksz7RfGg6KlVbYzh
m9TjFtXojQDnxVUFut6Kl/P60+a7a0ZSDA+VAZHOJWFScylGHRutDW06RXkg
KHQ74ULRLxTQKJroCGrhlgN01QYeA15UDMYBa6dd4HGJ7VYOfD6sKSwEzhp1
SP2CIrMk5Vdp/BEoHBYluIZ4iPAuEk2bDBJEcpopRQBhiK3U0bQ8jRZtToiE
CFixAX7qtGytjgOstRBJsxBqKRNPKmVTZgPAJdeKXE9UtZCFxl/IcsBVesTg
ArhGJsTGtRuhrlxAZjNMGzSXLXqwlQNRRXO36KC9LIdpFoTCCuUL0ATFZhf+
rQNaOXiv1TAH+QVnocPUSb1ycgtuEXkbqCXshJMWaCw+Dh9NSQTG1UXcR8ED
xGiArFFq56KgV4BfKZsEaCIoRiaEIE74sA19Uf9SXAEc6Q5DjygeoAfKYiGI
PHXt9dRDX1nspCkyGDZrakLMpuegFCFKKE4IFLYhZXBTVkVdpRyCjCTXLaOI
p6cuiXMEguhZNgMyMqitpKv/XjlOATvByKtAKNF0KqTTZAtUEVKJ3A3nqdXx
AApGfl0t6bqSQWC2SLC43GqkA/Aae9Pr5gCQUj6rkM0opNNKxTSsKb1LAw8z
o5JPInbRXK6X2qudwiwqSoBDpXjLKA3qGRQnKhNiCCysehbwsurYUEKAZdJM
G9VT6wiCWWbNHF4CQG47529ia+IQ9Cm1xBABRJQoKIm9YayQO/AqtseCbUA9
nDhKAphCaoAy6hwuF70PI08rAQmAw5Z4LzR2fZsU7jTJkPJdAmgp4IPvAhmj
HjGw83tA57mAixdycWGn0XOR4rFPrBBNXBAcmH8JEgHwAu/IjaeiEMoDsonj
cVjY69IKxKGNDgfGR4ECpujhUmK4XHYZ/Hzq2hzdR7q+giHFUMMfQmZ1as7f
qKTmQDN16jmwXqemGU7C0SI2mEVWcFDHA5TqVIqXSWaAu1w8KxfPgHFS8TSE
F2/ETrCsz/Osu9BAQBkM0s3kqCUnxhBBzEUiwDCgPw86A0cdD4MvCtLJACU4
qCt+onRRqKhYnXJKr5o2KGeAEUQVIY6CuQ0lygdfqNOZueRGbLxUVBSgpdJo
2NkBpwiv2o0zBvUUSgJURU9EjsCnU6fzkJnHGIKe5HzCCKFyFIDLwsO7gCO2
p0kDCj6iuA8ICuBXcZwwVPRkrk/psMyglrB/a0oZ/G6eVTsN+wHOBqHwNiEq
xGyctZigD9xUUiYJIuto5eAgcRjETQuSnTz1/BE1F0BpNs6hBeBdJLxWPrlN
G2V/j0tqs4A1YmgpzQzYpRBG1AYFEAddYkAqByUNqjmjmg2bKpLMKJRsBApK
dso5gEIXiRRssIwQlLMU8qnUxDUPkFlMNMUBpwTlxK8mIxcHYDKL0TpDQV04
pEuJA9l+FKTTITYa2NTdrCy7lWcx8nDMeIkucIfVoVTWi0TUeBf6Arrn+vHD
xGoVUxSF3BJ0N5o9cNAcC/weaILRC3h4JIlu+HMhdpKijAi0Ah8JFyinU4DC
AOjIm4txFYwf9JMmeRxILpL13AGtxtvjITHIiF0FfbDE0BCYnzmPlYUdImv4
nDMBNzuMDTw85Dv6VkaGPhSJGwl0Pcs47OwUTCKLiY2GotewUnO8inVhBI4Y
IqBG61ihqSc6QbAeFZiMORJRK95oMYqMGio8aAs2oBZj5PoREn3Iksh3Krrl
ySEjd+RSmKwU39b7GllNrUAhY0lls8jyAt64QDgOlomFk2LJNNgH7ECu1H2t
YrNVAKSsdiGww4JDlSumocOoLhwhXa6yCVEbgMyop9LCCkSDDg+VaeJjBawE
oaxmHvQfoFjNHLxk0M0YdCxsQLOIdgGsHdoWBgT+EGOFHIe2hRHGxpTiLRyr
cRYrPjcPm0WDSMEiv09InY5BFbFoUtQjprnuIC3knYJkgSgGMkRAbJYaeZgQ
YYDh+500N4KXKKH4MM5z8MMW/bjfNRdmIM6XHeYp/NFummLssFgcxkmdl+ZS
8EE+tAmezcIl9ulZGHPghRLFH1MFLMACWqGh4JTXRQCURxFCNnFI+MSlhObp
Gy6MDJhLDHWIIEEoeL2SBX9uNk0DcQwRiACjCCep0ZIwQj9TkzBoeWxIJTwn
KhbjgyOBdTFahCSh6JtqNmIF+GizCqCNOLDUoc5BozDaaHwASKGakssmdNpZ
lJlaNaVWX1bKLmOF8iAOQ8dC+HI6iHThoDoSVoBx8Fr4LJwaZBZognS2FMr4
dTmpQuVD+lzWGaiW0zprt81ZzDN28yxNett5eCOyp1E/q1VP6zSX8Xb80WZi
ed2itWU3cjE2MOqnTcYpl40NmIAmMgg2wIeCMqGgBAYYxxAOEe4gI9BEC8M2
gBI2xufhUqezcSy6Sbgs1A8GHHQAW83ayybNhMUws6636wvjAtk5eDt0FcOi
107jE/XaSblwHJDh1OAHsEJVreNiTNZ1NVX8bIwPFAmng2NG3VKvdwpT1y8k
+IteO4uFZlFU0EaOXDGrlM2sT01DPNcRxDqEEQkdfsPl5Pr9CpdLZHOIzNAx
hwwR0mzla9Qz+BS0PD5vSCQYF0smlapZLDzOsFAwolZNY528jWJyXU6xkP7b
cEg8ND5XymwDd4Nh0usRoGKxrOcLLDRpw5DjwvGjaK2W6YW4aHleAb1yW9no
bjh3UmATl9y4hQ2q6vUzZjMb7MZLGC6cPt4Io5tMaG+sma+uaMMhCQYBTHc6
OFixWrnkHPB2B5jCdjg4gC8QkKKjueyz0YAwEuQnwyKnbcplnXLbZsFrLGAH
iifVvLiEjnUOrIfqYpBxLjha1BtgTRXShE4zo9NMGXRTJsOMTDgIyqBooepo
92hbdJkpBAXggvsp/RFajISmSc/BwNJEfVhBncIjTITlDhsXBpvOWj8HfUsx
ji7IIncDNfIkahYMpwpOUskCGWnq0ixBPaBp2l1yG3KiWw7babMjNoKScxg6
vUkITKGcWEGLVGk5Gh1Lo5uVyiYl4lGtZkalmTHoSS1BNzARb8EJriOI7oDK
TxGNa7cTCl6vGDh6PTzGywv6eCgbbIOBBaFUisvgLyoc44DaQzPCSeFVjJLR
CGFEx+dotVMGwyx9EA3aDE4/HJIzXiFJZUKLEYuFxZGgOBHXRCNKLCCdjxFh
9EJBmc8nBqBuNzkrmujDup1DswoePuTRZYNWgPhQksv4aALOQ4fncXOxf4+b
mA7UMNSBgBx7wOCgnDDOCumETDIql4xz2UNC/oRWMyeXjgHoZ245r60YwOj5
GNyaHEE4EZVGQ1QS2BWGBfuERV9e0EIrAOvqkjkSkNCtUG4ZhXqjCKOq03Nl
ymm0sFBAA/4S9QxchXJGl7q0Z6GrBlxwMOhXQhj/H1Mc+y4=
"], {{0, 100}, {150, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag[
         "Byte", ColorSpace -> "RGB", ImageResolution -> {300, 300}, Interleaving -> True, MetaInformation -> <|"Source" -> "http://www.houstonpettalk.com/pet_ownership/golden-retriever-rescue-july-celebration/", "URL" -> "http://www.wolframcdn.com/waimage/hset050/19c/19cb768729627f0c62415dbd84896b60_v001s.jpg"|>],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{150, 100},
PlotRange->{{0, 150}, {0, 100}}]\)},
   testAssoc4 = <| dog -> <|"colour" -> "golden", "size" -> "large"|>,
     RGBColor[1, 0, 0] -> <|"colour" -> "red", "size" -> "small"|>|>];
In[8]:=
(* Evaluate this cell to get the example input *) CloudGet["https://www.wolframcloud.com/obj/b6b17cec-1d34-4447-86f6-05f4ea7aedad"]
Out[8]=

Properties and Relations (3) 

Where keys are specified as lists, they must be wrapped in Key:

In[9]:=
ResourceFunction[
 "NestedKeyDrop"][<|1 -> <|{11} -> "one.1", {12} -> "one.2"|>, 2 -> "two", {3} -> "three"|>, {1, Key@{11}}]
Out[9]=

Where keys are key-literals, they must be given in the form Key[Key[key]]:

In[10]:=
ResourceFunction[
 "NestedKeyDrop"][<|"a" -> 1, Key@"a" -> 2|>, {Key@Key@"a"}]
Out[10]=

NestedKeyDrop strips off the first Key in each key of the key sequence:

In[11]:=
ResourceFunction[
 "NestedKeyDrop"][<|"a" -> 1, Key@"a" -> 2|>, {Key@"a"}]
Out[11]=

Possible Issues (3) 

Not wrapping lists in Key returns a Failure in most cases:

In[12]:=
ResourceFunction[
 "NestedKeyDrop"][<|1 -> <|{11} -> "one.1", {12} -> "one.2"|>, 2 -> "two", {3} -> "three"|>, {1, {11}}]
Out[12]=

However, NestedKeyDrop may sometimes interpret a key not wrapped in Key as a list of key sequences of length 1:

In[13]:=
ResourceFunction[
 "NestedKeyDrop"][<|1 -> <|{11} -> "one.1", {12} -> "one.2"|>, 2 -> "two", {3} -> "three"|>, {{3}}]
Out[13]=

Key-value pairs associated using RuleDelayed anywhere in the given associations are not supported and may cause erroneous behavior:

In[14]:=
ResourceFunction["NestedKeyDrop"][
 <|1 -> <|11 -> "one.1", 12 -> "one.2"|>, 2 :> <|21 -> "two.1", 22 -> "two.2", 23 -> Print["Hello"]|>|>,
 {2, 21}]
Out[14]=

Resource History

Related Resources

License Information