Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Create a graph by successively applying a function and differently tagging edges corresponding to different outputs
ResourceFunction["NestGraphTagged"][f,expr,n] gives the tagged graph obtained by starting with expr and applying f successively n times. |
"StateLabeling" | False | whether to render states as boxes |
"RuleStyling" | Automatic | list of styles for edges/rules |
"FormattingFunction" | Automatic | how to format a state |
"PostProcessGraph" | Identity | post-process graph |
Make a nested graph with edge coloring:
In[1]:= |
Out[1]= |
Use a pure function:
In[2]:= |
Out[2]= |
Use a list of initial expressions:
In[3]:= |
Out[4]= |
Add a legend to explain colors:
In[5]:= |
Out[5]= |
Label the vertex states in a nested graph:
In[6]:= |
Out[6]= |
Edge colorings can be overridden:
In[7]:= |
Out[7]= |
Add labels to edges with EdgeLabels and a pattern:
In[8]:= |
Out[8]= |
Add edge labels using output index:
In[9]:= |
Out[9]= |
Add tooltips to edges:
In[10]:= |
Out[10]= |
Make custom edge tags by returning a list of rules (tags will be pairs of the form {key, index}):
In[11]:= |
Out[11]= |
Make custom edge tags by returning an association:
In[12]:= |
Out[12]= |
Turn on special vertex shapes:
In[13]:= |
Out[13]= |
Change the formatting for vertex 31:
In[14]:= |
Out[14]= |
Use custom styles for output values:
In[15]:= |
Out[15]= |
If the output is graphics with a legend, it useful to apply some custom function to the graph itself:
In[16]:= |
Out[16]= |
Vertices can be number pairs:
In[17]:= |
Out[17]= |
For a remainder graph, to find 2143 (mod 7), start at 0 and follow (2143) to get remainder 1:
In[18]:= |
Out[18]= |
This work is licensed under a Creative Commons Attribution 4.0 International License