Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Fast numerical approximation to the PDF of the Voigt distribution with around 1.2% of maximum deviation
ResourceFunction["NPseudoVoigt"][x,b,σ] calculates the approximation at postions x of a Voigt distribution with CauchyDistribution parameter b and NormalDistribution parameter σ. |
NPseudoVoigt always returns numerical results, even for exact inputs:
| In[1]:= |
| Out[1]= |
NPseudoVoigt compared to the analytic solution:
| In[2]:= |
| Out[2]= | ![]() |
NPseudoVoigt automatically threads over lists:
| In[3]:= |
| Out[3]= |
NPseudoVoigt is approximately normed to 1 for b and σ greater than 0:
| In[4]:= |
| Out[4]= |
NPseudoVoigt's norm has four additional terms that cancel out for non-extreme values of b and σ:
| In[5]:= |
| Out[5]= |
NPseudoVoigt's deviation to the analytic solution in the maximum is usually less than ±1% for every parameter combination b and σ:
| In[6]:= | ![]() |
| Out[6]= |
NPseudoVoigt's relative deviation increases if b and σ approach one another:
| In[7]:= | ![]() |
| Out[7]= | ![]() |
NPseudoVoigt is also stable against σ being 0:
| In[8]:= |
| Out[8]= |
NPseudoVoigt can be compiled to obtain faster execution times:
| In[9]:= | ![]() |
| Out[3]= |
| In[10]:= |
| Out[10]= |
| In[11]:= | ![]() |
| Out[11]= |
Negative b parameters can produce imaginary values:
| In[12]:= |
| Out[12]= |
Negative σ parameters do not yield symmetric values:
| In[13]:= |
| Out[13]= |
NPseudoVoigt can be used to approximate an atomic absorption spectrum efficiently:
| In[14]:= | ![]() |
| Out[15]= | ![]() |
| Out[16]= | ![]() |
NPseudoVoigt can be used to show that σ is negligible or even 0, whereas the VoigtDistribution could throw errors:
| In[17]:= | ![]() |
| Out[19]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License