Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Find a numerical approximation for a Fourier sine coefficient of a function
ResourceFunction["NFourierSinCoefficient"][expr,t,n] gives a numerical approximation to the nth coefficient in the Fourier sine series expansion of expr. |
Calculate the numerical approximation to a Fourier sine coefficient:
In[1]:= |
Out[1]= |
Compare with the answer from symbolic evaluation:
In[2]:= |
Out[2]= |
In[3]:= |
Out[3]= |
Repeat the computation, using a different definition of the Fourier sine transform:
In[4]:= |
Out[4]= |
Wolfram Language 11.3 (March 2018) or above
This work is licensed under a Creative Commons Attribution 4.0 International License