Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Numerically evaluate the gradient of a function summed over the eigenvalues of a matrix, with respect to matrix parameters
ResourceFunction["NEigenvalueSumGradient"][f, m][x, y, …] finds the gradient of the function f summed over the eigenvalues of the matrix m[x,y,…]. |
Define a symmetric matrix function:
| In[1]:= | ![]() |
Find the gradient of the eigenvalue function #Log[#]& summed over the eigenvalues at x=1, y=1:
| In[2]:= |
| Out[2]= |
Check:
| In[3]:= |
| Out[4]= |
A non-symmetric matrix:
| In[5]:= | ![]() |
| Out[7]= | ![]() |
Find the gradient of the function Sin[#]Log[#]& summed over the eigenvalues at x=1, y=1:
| In[8]:= |
| Out[8]= |
Check:
| In[9]:= |
| Out[10]= |
A somewhat large matrix with two parameters:
| In[11]:= | ![]() |
Finding the eigenvalues of even a moderately large matrix with symbolic parameters is slow:
| In[12]:= |
| Out[12]= |
Using NEigenvalueSumGradient is quick:
| In[13]:= |
| Out[14]= |
Check:
| In[15]:= |
| Out[15]= |
Very large matrix:
| In[16]:= | ![]() |
Using NEigenvalueSumGradient is reasonably quick:
| In[17]:= |
| Out[17]= |
This work is licensed under a Creative Commons Attribution 4.0 International License