Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Generate a multivariate Taylor polynomial of a given total degree
ResourceFunction["MultivariateTaylorPolynomial"][func,vars,n] computes the degree n multivariate Taylor polynomial of func in vars. | |
ResourceFunction["MultivariateTaylorPolynomial"][func,vars] computes the multivariate Taylor polynomial of degree 1. |
Compute a multivariate Taylor polynomial of degree 4:
In[1]:= |
Out[2]= |
Check the result numerically:
In[3]:= |
Out[4]= |
Compute constant and linear terms of an expression expanded at {x=0,y=2}:
In[5]:= |
Out[6]= |
Compute a multivariate Taylor polynomial around {x=1,y=-2}:
In[7]:= |
Out[8]= |
Check the result numerically:
In[9]:= |
Out[10]= |
MultivariateTaylorPolynomial can expand variables at infinity:
In[11]:= |
Out[12]= |
Providing Assumptions can simplify the computations and results:
In[13]:= |
Out[13]= |
Check these results numerically:
In[14]:= |
Out[15]= |
MultivariateTaylorPolynomial can give results that have asymptotic terms such as exponentials and implicit piecewise terms:
In[16]:= |
Out[17]= |
Provide Assumptions to obtain a simpler result:
In[18]:= |
Out[18]= |
Check these results numerically:
In[19]:= |
Out[20]= |
Expand at z=-∞:
In[21]:= |
Out[21]= |
Check numerically:
In[22]:= |
Out[23]= |
Compute a multivariate expansion to seventh order:
In[24]:= |
Out[25]= |
Use weights of {1,3,2} on the variables {x,y,z} respectively:
In[26]:= |
Out[26]= |
Use weights of on the variables {x,y,z} respectively:
In[27]:= |
Out[27]= |
Compute a multivariate Taylor polynomial of total degree 4:
In[28]:= |
Out[29]= |
One can use Series to recover all terms by expanding in x and y separately to order 4, but this gives extra terms:
In[30]:= |
Out[30]= |
Wolfram Language 13.0 (December 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License