Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Generate a Morton (z-order) curve
ResourceFunction["MortonCurve"][n] gives the line segments representing the nth-step Morton (z-order) curve. | |
ResourceFunction["MortonCurve"][n,d] gives the nth-step Morton curve in d dimensions. |
A 2D z-order curve:
In[1]:= |
Out[1]= |
Lengths of the approximations to the Morton curve:
In[2]:= |
Out[2]= |
Visualize the Morton curve in 2D with splines:
In[3]:= |
Out[3]= |
A 2D Morton curve:
In[4]:= |
Out[4]= |
A 3D Morton curve:
In[5]:= |
Out[5]= |
An n-dimensional Morton curve:
In[6]:= |
Out[6]= |
Show the Morton curve for different numbers of steps:
In[7]:= |
Out[7]= |
DataRange allows you to specify the range of mesh coordinates to generate:
In[8]:= |
Out[8]= |
Specify a different range:
In[9]:= |
Out[9]= |
Visualize the Morton curve in 3D:
In[10]:= |
Out[10]= |
With tubes:
In[11]:= |
Out[11]= |
MortonCurve consists of lines:
In[12]:= |
Out[12]= |
DataRange→range is equivalent to using RescalingTransform[{…},range]:
In[13]:= |
Out[13]= |
Use RescalingTransform directly:
In[14]:= |
Out[14]= |
By default, the coordinates of the Morton curve are not in the unit square:
In[15]:= |
Out[15]= |
Use DataRange to generate the Morton curve in the unit square:
In[16]:= |
Out[16]= |
MortonCurve can be too large to generate:
In[17]:= |
Out[17]= |
Traverse a Morton curve dynamically:
In[18]:= |
Out[18]= |
This work is licensed under a Creative Commons Attribution 4.0 International License