Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the molecular complexity of a given molecule
ResourceFunction["MolecularComplexity"][mol] returns the molecular complexity Cm for Molecule mol. | |
ResourceFunction["MolecularComplexity"][str] returns the molecular complexity for the input molecule identifier str. |
A molecule identifier readable by Molecule or a Molecule object itself can be taken as input. By default, it returns a numerical output corresponding to the Cm of the molecule:
In[1]:= | ![]() |
Out[1]= | ![]() |
Use a Molecule as input:
In[2]:= | ![]() |
Out[2]= | ![]() |
In[3]:= | ![]() |
Out[3]= | ![]() |
MolecularComplexity accepts a SMILES or InChI string argument:
In[4]:= | ![]() |
Out[4]= | ![]() |
In[5]:= | ![]() |
Out[5]= | ![]() |
MolecularComplexity threads over lists:
In[6]:= | ![]() |
Out[6]= | ![]() |
Zero complexity inputs return an error:
In[10]:= | ![]() |
Out[10]= | ![]() |
In[11]:= | ![]() |
Out[11]= | ![]() |
MolecularComplexity utilizes Molecule options, so it can only take identifiers that Molecule can parse:
In[12]:= | ![]() |
Out[12]= | ![]() |
Show that the trend in molecular complexity of alkanes with increasing (CH2) groups from 1 to 10 is linear:
In[13]:= | ![]() |
In[14]:= | ![]() |
Out[14]= | ![]() |
Calculate the change in complexity for a Diels–Alder reaction:
In[15]:= | ![]() |
In[16]:= | ![]() |
In[17]:= | ![]() |
In[18]:= | ![]() |
Out[18]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License