Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Convert an axiom system from modus ponens to equational form
| ResourceFunction["ModusPonensToEquational"][axioms,implies] converts the specified list of modus ponens axioms to equational form, taking implies to be the representation of implication. | 
Convert the Lukasiewicz modus ponens axiom system to equational form:
| In[1]:= | ![ResourceFunction[
 "ModusPonensToEquational"][{imp[
   imp[imp[a, imp[b, a]], imp[imp[imp[not[c], imp[d, not[e]]], imp[imp[c, imp[d, f]], imp[imp[e, d], imp[e, f]]]], g]], imp[h, g]]}, imp]](https://www.wolframcloud.com/obj/resourcesystem/images/9ba/9ba4c0b5-6725-42e9-bc71-9312c29d8ef9/3915f05b60fd79e7.png) | 
| Out[1]= |  | 
Convert to the Hilbert–Ackermann axiom system for propositional logic, giving a function for implies:
| In[2]:= | ![ResourceFunction["ModusPonensToEquational"][{or[not[or[a, a]], a],
  or[not[a], or[a, b]],
  or[not[or[a, b]], or[b, a]],
  or[not[or[not[a], b]], or[not[or[c, a]], or[c, b]]]}, or[not[#1], #2] &]](https://www.wolframcloud.com/obj/resourcesystem/images/9ba/9ba4c0b5-6725-42e9-bc71-9312c29d8ef9/460d176d11351426.png) | 
| Out[2]= |  | 
Wolfram Language 11.3 (March 2018) or above
This work is licensed under a Creative Commons Attribution 4.0 International License