Wolfram Research

Function Repository Resource:

MintNFT

Source Notebook

Mint a non-fungible token (NFT) on a blockchain

Contributed by: Piero Sanchez and Christian Pasquel

ResourceFunction["MintNFT"][nftSpec, transactionSpec]

mints a non-fungible token (NFT) specified by nftSpec, using the transaction specifications given by transactionSpec.

Details and Options

nftSpec is an association with the following keys:
"Name" name of the NFT
"Thumbnail" thumbnail image of the NFT
"Source" source data of the NFT
"Description" description of the NFT
"Expression" Wolfram Language expression associated with the NFT
"Notebook" Wolfram Notebook associated with the NFT
"NFTID" whether to create an autogenerated ID for the NFT
"NFTQuantity" number of NFTs to mint
The maximum string length of "Name" is 32 characters.
The maximum string length of "Description" is 64 characters.
The maximum string length of "Expression" is 64 characters.
"Thumbnail" can be a File containing the path to an image file, or an expression such as Image, Graphics or Graphics3D. Ideally, the image size should be less than 1 MB.
"Source" can be a File containing the path to the source file associated with the NFT, or an expression such as Image, Graphics or Graphics3D.
"Notebook" is a File containing the path to a notebook associated with the NFT.
With "NFTID"True, an ID will be autogenerated using the current UnixTime and a random integer. Note that this is an accessory metadata ID used for readability when sharing the NFT details. This ID does not identify the NFT on the blockchain.
"NFTQuantity" has a default value of 1. With "NFTQuantity"n, n copies of the NFT will be minted under the same transaction.
Files associated with the NFT, such as the ones specified by "Thumbnail", "Source" and "Notebook", will be automatically uploaded to IPFS and their content identifiers (CIDs) will be added to the NFT's on-chain metadata.
transactionSpec is an association with the following keys:
"OwnerAddress" recipient address that will own the NFT
"PrivateKey" private key used to sign the minting transaction
"Fee" transaction fee
"OutputAmount" amount of cryptocurrency to include in the new transaction output
"OwnerAddress" can be any valid address, including the address associated with "PrivateKey".
"PrivateKey" should be a PrivateKey associated with the address with enough balance to mint the NFT.
If "Fee" is not included, it will be automatically computed.
If "OutputAmount" is not included, it will be automatically computed.
If the "OwnerAddress" is the same address associated with the "PrivateKey", "OutputAmount" will not be used.
ResourceFunction["MintNFT"] has the following options:
"Preview" True whether to preview a transaction instead of submitting to the blockchain
BlockchainBase {"Cardano","Testnet"} blockchain to use
The BlockchainBase option for this function currently supports only "Cardano" (Cardano mainnet) and {"Cardano","Testnet"} (Cardano testnet) as values. $BlockchainBase can also be used to set the default BlockchainBase value.

Examples

Basic Examples (13) 

Set the default blockchain to the Cardano testnet:

In[1]:=
$BlockchainBase = {"Cardano", "Testnet"}
Out[1]=

Create an image:

In[2]:=
image = \!\(\*
GraphicsBox[RasterBox[CompressedData["
1:eJzt2e3NI7kRReEBHIkjcQx2CAb82zE5Q4fgXRj6sYNeTrPF6jqXPA+wgHH9
qkWV+FWav/7z3//4119+/Pjx99/++89v//3+v6/9929/+n/d+rvZ/On7rPr7
KtZnzPqslTruj7fmQzXquKp8e15UjyNl/qSMp6ueb+3/6SiflzZ/qqWP/6Pq
vrTLfLA+Y+n1+fl1tDrbN41Zn7H0+uxyz6TMhw/6vp2er5I+b7593ern71LP
b59/Wv4r7udrnjuL9n3R9v+nrM+Y9bm2ejyUfWaW586Y9Rmj7QMp98yn7/Pt
39O+r1NR1kHKeknbT6jj0h+5n6+Vsp90O2U+PGV9rnWdR9S62Tc9e59Vf1/F
+oyln+OzqPvPXbT5mTKe3ftEipR7e8r+v8t4qtDW76xT9xP6/t/N+oxR7ttp
9aTNE8r3OMv6jJ1WH+o5TpkPH5R7Jm3fpo3nLZR1Q11fqd8zbT6njKfqdVXo
+3n3+9Du29Wsz1h6fd6uK/X33irU75FSJ+szRq0P5fld+0n3/kOZnx+U8dD2
h/T5Rh3/Kf8e+kEbl/v5WpTzl1qfWfT9vJv1ubbLfrJK6rmZfg+pZn3GqPsA
pT5vofdZ3d8v/R6eYtfxd39f9Htm2npPR/9+u9HXSzfrc23X/Ye2n6efm9Wo
56b1Wfv3FLR9YJf9h4K6XqpV/+5K//emqtdVOeWeWY22r7qf32NfNmZ9xij3
Vdo+QP2+VqHNc8o8nGV9xtLrQ6njLvx+x2jnXVe/6vjX5l1c73tL+X5T1suH
9RlLrw+1rk/Rzrv0eU6dh5Q6WZ8x2vyn1Z82nlXj6N7fKPWhSf+c6eN/ijKf
T1vvtP055Xekbul9WTXrc43W96XXsxtlX51lXzlmfcZOuydQ50M12rlMu/dS
fk9y/Gv/njqfq9Hqc1fKeLqlr5dq1ufaLvvb22h9+i6/D+zWN3XfK6zP2r/v
fu5TKeOh5V1o40+vv+PvRVvXKfXpkn7fS58PH9ZnjH7fOy3XPbR1SllHs6zP
GLU+Vc+njGPV61JRvq9ZtPHMcvxrud7voax36vdFu+9Vs28dS68Pta5UtD49
Je9CXUeUOlmfsfT1kvLvWen5KtRzvLovcPxrnu96fydfZdfvq1t6X1bN+lyj
7TMpuWpQzv1Z9pVj1met9Hvaabz3jjn+Z/kqrve1/L7usS8bsz7XqL9bno7W
p++ar5baN9lXjqXXJ/0etUs9KfOfsq6ecvy90s9T2vql7p/Vz7cvG7M+Y/Tz
1HxtLgbaPkPZB2ZZnzHavrHr82n17J7/Vc93/DVOH//u6/euXZ+fdk+2bx1L
rw+1rqei9enmvaj7AKVO1mds13tUl5TxpOyHjv9Zvkr6+GedNp705z+V3pdV
sz7XaH2HuZJV/55fxb5y7LT6vFV3yn2NMo5Vr6NIHX/quH+W/jlcvz3Pp+7/
p/RlH9bnGnU9qhatTzd/lq9G6ZtmndZXzqLWp+r56etx13+/667/2/fAVVI+
b3q+yq7r91codaXNh6fo67cb5T5G28fMn+U6A22fpOxjs6zPmPvYGOW+eCra
fEvpm/R/6fOh2qn7v33rWHp9qHVVDVqfbv5O3oW6j1HqZH3WSq/PW3V/+96y
+nW0+Xla/+T8efe5375Pdf1p0vuyatbnGu3ebv5OLl1JPTftK8fS67PLv69R
+ibaOUKt/9v1PO3zrkKtZ9XzU+q/+nWp9XnK+lyjrl9lo/Xp5sx8NfvKZ++z
6u+r0OYbpS4fu6zfu1LGk1LPWemfN2U8rt+1z0+pz4d96xjlPkO7V5szc2kF
2j5P2YdnWZ8xah9Nqc9T367ft8ex6nVVqut52uddPY5Vr6NIr381+9ax9PpQ
66pMtD7dfI+8C3UfptTptPqk/HsHLV/F+q9F+1zOH2a+ylvnVnpfVs36XKOt
O/M9cqkD5fftWaf1lbOo9aE9P5V1X8vPm/X8XVC+h13usfat16jnuzRC69PN
z8xXs6989j6r/r4KdX6+fS9a/bqq7zd9vVPvdbTxO3/WPPfp697us7rP91n0
enajr3dz8zdzKQHtnKKcI7Osz1q0fZj6/VY9f9f6p4//6fuscvr8SWPfOpZe
H2pdpSu0Pt3c/E7ehXqOUOqUXh9KHT9SxrPrev+gjusuyvhPmz+7jCe9L6tm
fa7R7o3m5ndyaUe79UEpfWU12r5H/f08df4/Rb+X0vJfSd0fZrl+nz0/7Z5J
3x+6UOe/1Il2XpubV+Srpd4bvVePpdwzd/8d4JR7KU36/uD6HaPOf/eHMcp5
SrvXmZtX5JJ45yzlHJx1Wn0odX8qpY/oRuvjKPN/Fm0+UOryVPrvwLT58FR6
fah1lTrQ+nRzc0LehXoOUupErU/V89PH/5b0e+ld1PmfPh+qnp++fmnz/6lT
9odZtHuXuTkhlzSv+l5UxXv1WPo+TB2/99JrKeM5bT64ft9Fnw9dqL+rSDuj
9enm5on5aqf3lU/fZ9XfU6SO+4O6vu6i3kv9XS5D+vg/7FvHKOcR7V5kbp6Y
S6pHuydQzvFZ6fWh9Evfvo4yHz4o49/lHKfU8ynX75q/p87PWen1odZV2hGt
Tzc3PyHvQj3HKXWifb9dz0+ZD9Tx06TXkzb+u3ZZv9VOmQ+zaPcWc/MTckk8
lH+/mJV+r66Wfg+flX5O0c5r69nrtPX7Yd967dTf2aSd0c5rc3Pzerv1lbv2
3dR7OGU+fKT+jkTjfOgZx9vvc0rf+kHfz83NzTm5pHy0ew7lHjKLWh/K82nn
1659x+rXOR/Woqxfan1mpff11LpKmkc7v8zNzb/Pu1DvIZQ6UecDpT5vod2r
73I+1Hh7PqTs5x/pfWsV2rlvbm7+fS7pPN/eW7pQ+wJane6inUennYMp4zkt
T2Pfes3fhSTNop1H5ubm7+erpfaV6X03pY67oN6rnQ89UtZ79/4/i3Je0M5l
c3Pz93NJ+hXaPY1yj5pF27dp9aeNZ9U40s7xU77frvXV/f3OSu/rqXWVxEPr
083Nzfl5F+o9ilKn0+751PlAQ+tT7koZT7f0vrUK7dw0Nzfn55K0GuXfa2ZR
+6yqOqXUvwvtvE4/908dj33rtVN/p5LERTuvzc3N98tXo/SVs6h9d9XzKeNY
9bpT+P2ueT51/5xF2W9p55q5ufl+uSR1o90zKffAWennSNfzzcf5Krt+v92q
9ivqfitJVWjnr7m5uXkX6j2QVqe70vssjfn93pPet1ahnTvm5ubmkpTm23tj
l/S+O70P2qWetPGsHsfbz7dvvfZWPSWJgtanm5ubm3ffG6vuydVo9dz1+bR6
0saT/vzu/WcWZb+inQvm5ubmafu5JFWj/fsO5R47a9c+qMtp40l//lNV6526
X0lSKlqfbm5ubr7r74HUe+zb/36U9j7f9ilvj2PV67qfT50/tL61Cm3fNjc3
N9/1fihJVJQ+aBa17656fvq52fX87vpQ6kqbD7Oo9ZekVLQ+3dzc3JyWrzb7
PpR77C71r0Lp96hOnT+U9U7bV83Nzc1puSTpO3f317f2bco9vFp6fdJ/h0md
Nz97uz7d612SdI3Wp5ubm5un512o93BKn0WtT9XzafM5Zb6dtt7Nzc3NzSVJ
HSh94izaubNrfVLO8V1+x6hC/V1FknSN1qebm5ubn5avNvs+lHs4tY+m1Ocp
yu8w1DpS1gttXzI3Nzc/LZcksX3b16w+F+h9RPXz0/NV0n/noa4XSVIP2nlt
bm5ubj7Ou+zSR9DqSkOpv+vF3Nzc3PzNXJK0l2/7ji7Uc3D2ddX1f3s83fWv
Qv3dRpLUg9anm5ubm5uvzVer6stoaPWnjectlPlGW9fm5ubm5mtzSdLZ7p4P
b507VX0Q7RzcZTxvf1/d802StCdan25ubm5u3pt3oY2f2mdRfgegfV+zaOvO
3Nzc3Lw3lyRpBqUvm5XSJ6b9DlCF+ruEJGlPtD7d3Nzc3DwrX232farGld5f
+X2Zm5ubm5vfzyVJqnT3/HnrXKs+D7/9vFWvW/38Xb4vSZJ+R+vTzc3Nzc33
zrukf9708c+izVtzc3Nz871zSZJI7p5X6efaqeNP/9ySpD3R+nRzc3Nzc/NK
s+9D6dPf6kOrPgdtXpmbm5ubm0uStItv+9auc7Pr+as/r/cLSdIOaH26ubm5
ubn5N3mX9D56Fu17Nzc3Nzc3/yaXJOkkd8/D9D736fO9L0iSTkTr083Nzc3N
zd/MV6P2u0+fa25ubm5ufkIuSZL+3N3zk3qOe/5LkvRrtD7d3Nzc3NycnKeg
1c3c3Nzc3JycS5Kkde6et0/PZc9zSZLWo/Xp5ubm5ubmO+Wr0D6Xubm5ubn5
TrkkSXqP57EkSQT/A3ntk+c=
"], {{0, 0}, {161, 81}}, {0, 1}],
Frame->False,
FrameLabel->{None, None},
FrameTicks->{{None, None}, {None, None}},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImageSize->250,
Method->{"DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> {
            "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic},
PlotRangePadding->0]\);

Get your keys and address:

In[3]:=
myKeys = GenerateAsymmetricKeyPair[
  Method -> <|"Type" -> "EdwardsCurve", "CurveName" -> "ed25519"|>]
Out[3]=
In[4]:=
myAddress = BlockchainKeyEncode[myKeys["PublicKey"], "Address"]
Out[4]=

You need some tADA (the Cardano cryptocurrency) in your address to send transactions. To achieve this, you will use a Cardano Testnet Faucet. This is a website that will send some amount of tADA to your address.

To use it, copy your address to the clipboard and visit the Cardano Testnet Faucet:

In[5]:=
CopyToClipboard[myAddress]
In[6]:=
SystemOpen["https://developers.cardano.org/en/testnets/cardano/tools/faucet/"]

Paste your address in the Address field (double-check that your address is complete and does not have extra characters such as double quotes). Make sure "tAda" is selected in the drop-down menu. Click the "I'm not a robot" captcha and then the Request funds button:

Once you request funds, it may take about a minute for the transaction to be added to the blockchain.

Once the transaction has been added to the blockchain, check your address balance (and other details) with the BlockchainAddressData function by running this line:

In[7]:=
BlockchainAddressData[myAddress] // Dataset
Out[7]=

If this line returns an error, that means the transaction has not been added to the blockchain yet. Wait a moment, then try running the line of code again. You will see here the details of your address, including your balance (given in Lovelace units). If you just want to extract your balance, you can evaluate the following:

In[8]:=
BlockchainAddressData[myAddress, "Balance"]
Out[8]=

Mint the NFT:

In[9]:=
myNFT = ResourceFunction["MintNFT"][<|
    "Name" -> "My First NFT",
    "Thumbnail" -> ImageResize[image, 100],
    "Source" -> image,
    "Description" -> "Minting my first NFT"
    |>,
   <|"OwnerAddress" -> myAddress ,
    "PrivateKey" -> myKeys["PrivateKey"]
    |>, "Preview" -> False];

See the details of the minted NFT:

In[10]:=
Dataset[myNFT]
Out[10]=

Get the data of the transaction that minted the NFT:

In[11]:=
txData = BlockchainTransactionData[myNFT["TransactionID"]];
txData // Dataset
Out[11]=

Get the NFT metadata:

In[12]:=
txData["Metadata"] // Dataset
Out[12]=

Download the NFT image that was uploaded to IPFS by extracting its content identifier and using ExternalStorageDownload:

In[13]:=
cid = StringDrop[
  First[Lookup[Flatten[Nest[Values, txData["Metadata"], 3]], "src"]], 7]
Out[13]=
In[14]:=
myNFTFile = ExternalStorageDownload[cid, ExternalStorageBase -> "IPFS"];
In[15]:=
Import[myNFTFile]
Out[15]=

Reset the blockchain settings:

In[16]:=
$BlockchainBase = Automatic;

Scope (6) 

Set the default blockchain to the Cardano testnet:

In[17]:=
$BlockchainBase = {"Cardano", "Testnet"}
Out[17]=

Use a File as the NFT source or thumbnail.

You can specify a Wolfram Language expression to be included in the NFT metadata by using the "Expression" element:

In[18]:=
\!\(\*
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJzsnQl8FEX6/kfFCzxWZfH8/7xW12N3PXCV9Vh3dV1RPqurrvfqCosnlyKo
ICJHuK8g930EhAAKQSBAOMJhSLiSSAj3GSAkk4ScxJP8H/olRaV6pjMzGTIz
7PPdkU2/XV1dVd1d9T7VVdXXN2vz7FtnulyuD8/DP882/fivbds27fDcr7Dx
fOsP33279ZvNn2jd7s2332zbqNlZMD54hst1Zh2X6/jfFYQQQgghhBBCCCGE
EEIIIYQQQkiN+fnnn0tKSvLy8txud24ufrnWHzrG5vEQ5l73iUBue2BCCAkJ
VSsqW7XlKZD1n/wfasL8/HxUj6gkQ11PE0IIIUEGDdzhw4eNltJ9or0URaCa
T/eJ3wmvX7WdJ/9051YJyB9//PEXqp9b9/DdJ//MPdGL4T7h6ecadiusu4oo
OJyTU1xcfOzYsVBX2IQQQkhwKCwslMYRf5SWlh49erScEEKIBapEVIyoHi1J
4T5y5Eio62xCCCEkCJSUlOTm5ua588rKykLd2BJCSPiCShJVpdudi2oz1DU3
IYQQUiN+/vmnnJycXLebEoAQQqoFVaXb7Ua1yTkChBBCIprS0lK0aIWFhaFu
WgkhJDI4PjTI7UblGer6mxBCCAmcvOMcb85C3a4SQkhkUFZ2vPMkL4+zAwgh
hEQwMiMg1I0qIYREEu6846sGhbr+JoQQQgJH3gWEukUlhJBIwm1VnaGuvwkh
hJDAybMas1C3qIQQEknkUQUQQgiJcI63ZPlUAYQQ4geoNqkCCCGERDT5IC8/
1C0qIYREElb3CVUAIYSQCAZNWT7fBRBCiD/k5x3vPwl1/U0IIYQETsHxlwF8
F0AIIX4gNWeo629CCCEkcNCQFeQXhLpFJYSQSKIAMqCgINT1NyGEEBI4BRah
blEJISSSyKcKIIQQEuEUFByhCiCEEL+Q/pNQ19+EEEJI4BQcoQoghBD/OEIV
QAghJMI5clwFHAl1i1qFX745p9pf15cLjJ/HYJdMTTZ+vhz4YdMK4xfqIiGE
hBdHjnegHAl1/U0IIYQEzhGLULeoVaAKIISEOVJzhrr+JoQQQgKHKoAqgBDi
L1QBhBBCwp8ff/yxrCrff/+92ksVQBVATm+WL18e6iSEEVlZWZs2bap5PIYK
KLNx7NixUNT3hBBCyEmaNm3qqsrdd9+t9lIFUAXUkDVr1rRt23bixImhTshJ
wjBJIQGPdvPmzW+//fbCwsIaRtWjRw8UKVxo+64DBw6sXr06fKqRo0ePfvfd
d+np6XDF7XuTk5MbNGgwZsyYGp5FVwEpKSkuG7gJQ1TlE0IIISf4z3/+YzRP
d911l9pLFRAsFbBr164u1bFx48ZTXXqBsXz58iu9c/jwYYdjx48fj5vqhRde
qLXUVksYJqn2gQ/cuHFjSID9+/fXPLYbbrgBRQrvWjdGR0fffPPNUqucffbZ
DzzwgNHNDoHg7aaaPXu2v8EEnOL+++/HrmbNmhm79u7d+9xzz9WvX1+SVK9e
vXbt2hUXFxvBFi9eXLduXSS+JgWiqwAoC7sK+Pbbb0NU5RNCCCEnEBVwzjnn
DKzkyy+/VHvDUAXYnXD7z+7M2x1+/HwRFL4oBV+S7YsKWLNmzakuvcBYtGiR
uC5n2IB3l5ub63BsGLrcYZik2qdDhw516tTJyMgISmx2FdCxY0dYzjzzzLvv
vvuJJ5649NJLsQkPPCUlRYXZsGGD3Fd1bOhvanwMBkaNGgXfXgI/88wz+q7d
u3eLJDnrrLMaNWp01113SbB77rnHLgQgARD5kiVLAi4QXQXk5OSo2vXVV1+l
CiCEEBImiAr41a9+5XEvVUCwVIABHAy4/RBcQS+fU4GogN/97ncBHBuGLncY
JqmWmTlzJkqgdevWwYrQUAHbtm2TvoWvv/5aLNnZ2eJ4v/766+qo+Ph4WJo3
b+4cuS/B4Gk/99xzojsaNmxoVwGPPfYYjNdddx3SJpb169dfdtllMPbv39+I
raSk5JZbbrn88ssh3n3IvQe8zQ6eMWMGVQAhhJAwgSogrFTAoUOHMjIyduzY
4dEugzeOHj2Kv7du3Yq/8/PzN2zYsHz58u3bt3sc5wxKS0sRODExccuWLXBv
AkitXyoAyVixYsXkyZNlgJPhcq9bty45OVnvfc3KyoLFcLdSUlKQL92CAHPn
zkW0qamp9pyq8G63Oy4uDif1PUkKFPsMi8zMTBSyL5kFhYWFKJ9p06bJFVGg
2JEvY5BMudWzrZfA3r17sXnw4EH8nZaWNm7cOHinUiZIhnEsbgDYd+7cadg3
b96M3Pk4rRWlceWVV6IEvLm4eOS/+eYblDbuLm+RICVTpkyZP38+3O9ymwoY
MWIENp999ln9EJEeV111lbJMmDABls8++8w5wb4Emz17NsJcc801CQkJQ4cO
NVRAUVHReeedByNuP/0oiBQYL730UntOJRJds/gFVQAhhJDwhyogrFRAeno6
7N27d4ffotvhccEuPavw5GUEERzCXr16qQFF+Nvuc8L579GjhwoTFRVlrAmD
2ODvwUNzGNjjuwpAGqR/VWjcuPHgwYN1l/vOO+/EJiJUhzRv3hyWxx9/XFmg
VmBp0KCBbMIlhj+pj6nGrlWrVunnPfvss2GPiYmpU6eOhFFufLVJKrd82ocf
flg/xUMPPQRh5ZzZvLy8p556StxL4cYbb4QPL3sPHDggT5ZxlHjgSuh17doV
m61atbr//vslko4dOy5YsAB/XHHFFYbeeeWVV2Bv27atskydOlU8cOH//u//
UAjOyZ43b563q2nk6JxzznnyySdh1MNAO9x3331nnHGGhIELjZvTUAEQEZ07
dzZG1MDvRZhLLrlEWfr06QMLJINzgn0JhjM+/fTTEMvllQ68rgKQElhQ8sZR
qNyUT27sktcZF154YWAVIFUAIYSQ8IcqIKxUQGlpae/evbFL7wkvLCyELoBR
/FKlAsTzh18xe/bsAQMGYBMOvz7ZE5FIsLFjx86fP3/cuHGyqUe+ceNGMS5e
vNhban1UAdOmTRMPp1GjRvBU//a3v8Enh9enu9zt27fHZqdOndRRcFxhOf/8
89VKNaNHj4bl1VdflU0IBOlD/u9//9uiRYubbroJm3Xr1tVXpBEVcO65515z
zTUvvfTSG2+84XuSwL333isZ7Nu376effnrbbbdhE0aHzOIqSMIQ28svv/zW
W29JRurVqyeD7f1SAXCqzzrrLEgPxIM0w/lHRmBPSEhQB6J8LrroIhjVLPKl
S5fCUYflL3/5C3L317/+VVx35wHtKBwEa9OmjWHHSZs0aSLqo2nTps2aNZOk
QggoMYI0/PGPf4QRwgoXSHKNwsflcNlmBxt89tlnCINEKgvSDAvyi2KHHTG3
bt16zpw5xoG+BNPf3dhVwMqVK+VKGa94oHzl9vAonX7zm99gF54vh0x5gyqA
EEJI+EMVEFYqAMydOxe7pk6dqizr16+HZdCgQeLDKBUACSCdn+WWexYdHQ2j
mi9ZXFws2iE+Pl5FNW/ePFh69uyp3CH40t26dYMxLS3NW2pFBdSvX7+NjVGj
RqnTXXDBBYZ7KWNvdJcbWgObDz/8sGzCb3RZC8jgX6RNjP/+97+xOWHChHJr
wEzDhg3hw6vhMcpD1ktPYoCTX1Bw8nL4mCRoK2yed955qtMbZQKHHOd1WP6o
f//+8uBs3rxZJeyBBx6AsWXLluV+qgCk33BrRS69++67yvLVV1+5rCW8ZBNX
sEGDBrB8/vnnKgwkDCzXXnutt2QDZA1hIBsNO+4flzWoZvfu3WLZuXMnxBeM
auVM3CrS/6+GP+Xn50M9SZE6qAAIT3nFoL8Gkgt93XXXuapiTFjwMZjCrgIg
ruVOgBbWQ4reBLgK9ngeeeQR7MJT5i1TDlAFkNOJH374IcUCf4Q6LeQ0Z71F
qFPxP0TEqQBf1gX1caXQwASFPZ4AcuGgAuCDGYOCZDiQ6qtXKsAYFQN3FMbe
vXvLJvxMbPbt21fv/4SnGhUVBTt8VGWE9+u8zo9aI8hOkyZNJIwsig6n0Zh6
IB3myuWGZ37hhRfCIZTciS/98ccf6746nNgzzjjD4+Lzwvvvv++yRs4oi6iA
xMREPZiPSRIVcOaZZzq8DbEjg5SM9SS3bds2ZMgQuOvlfqoA6BcjWHp6ussa
xKIunywvo7x3CQDf2DhQVuPZt2+ft5TfeOONCDBp0iTD/vzzz+sOv4DTwfjm
m2/K5j/+8Q9sfvHFF3oY3IfOKmDPnj3yoqRp06a6Hbl2WV308Nt37dolw+Fk
rFGfPn38DaawqwDw4osvuqwRPjNnzkSdhhseEkBuG1fVQVbGIa1atfKYKWeo
Aoi/oG7cWQmqLDGiORDLwYMHQ5Wwn3766aOPPnrLAnX1zz//HKqUnPaE7T1Q
a8gbbWkTQ52W/xWoAsJNBQB4kmrcjhoOpLr9lQowZonm5+eLXXqw4ZvJ5sSq
iFENX/cFUQGXX375dBvJyckSRrpVn3jiCeNY6Z3Wh9+IJ7l06VL8/fe///2c
c86BS1a/fv1bb721vNInb9iwoR4J3Et4nvDHXnvttaefflpqiU8++UQFEHfO
mOPpe5Kke9xl9bS3a9duwYIF3qZaK8SttY8nV/ilAj744AN7DDL2Rob3QDRd
dNFFderUUeJIvdR4rSpitI+rUSBJHgPIQCmcVI/t+uuvd1nLaTrkGi2XlL9H
FZCTk3PHHXdIrW6syfnGG2/cf//9hpiVWQD6DeBjMIVHFYB7Q11lpBaiz2WN
a5KVhYYNG2aPB9oHu1BD2ndVy2mjAhYuXBhngfvZ2BUfHy+7li1bFpK0nWbE
xMSo3hXIUjFefPHFYkE9aYRPSkpaUpUVK1akpaXt27fvl19+CWLCUlNT39LI
yMgIYuShBQWFQpPSQ9Wq7/rxxx/RSMmulStX1k56/L0HaofExMS4qiQkJOA2
gHMS3BMZn1ZJT08PbvyhJWzr0lOkAr6pGQ4x/y+ogOXLl6tBQTK2X++hVSrA
GK9y9OhRGdsjHub8+fMdvk1gdJs748u8AHGt7cs5jhw50nC5oXFgQRpQh5x/
/vmPPPIIjC+//LL4xuPGjcMfHTp0kMClpaXwkPWaQc1LtasA4171PUlutxtV
7hVXXKHOcvXVV9u/SKWARjjrrLMQbM+ePd7C+KUCPvzwQ3sMMov5vffeK69c
zQYCSu3t1KmTyzsoZG8Ju/baa122kfDIkUNsEIASRpznvXv3GnHKGC27CsAV
efDBB12WvEIhe0uSzsGDB13Wqv7O4R2CeVQB5dY7r549ez722GNoVW+55ZZm
zZohI/JiSJ9/oZB7UsrfX04bFaAeN/07MkBeEgkDBw4MVfIiiBYtWtSvXx+P
g7cAsbGxqkjbt28vxl//+tdiQVVphG/ZsuVbXkDVBw82WClHQ6NHbvdhao1Z
s2YNHz58xIgRaOyCEiHiUflCs6vvmjhxotoF9ywop6sWf++B2kGqdzuoHJ58
8kk4M8E6UXZ2tno/i7od9XOwYvaX0aNHwyVo165dEIfAhW1dShUQhiogNzdX
DQqCFsDfSUlJaq9SAcZKkniCxC6XDLIaf8PjLfFEtX3dOr6ogMmTJ7usaaqG
Hf6tq6rLvXXrVlgeffRRWaymb9++MKLKdVnrwMjcVXlTUF7p/Z577rnICxwn
tEeot6ERXD6oAN+TJKBMUGg9evSQIeh16tQxFv/UkcHw+ih3A1EBqLeNopau
eF9UABxd5Ouqq65ClmVs/PTp09XeKVOmSDEe8QTUk7eE3XPPPS7bqB7w29/+
FnY0hfbY1MRt+fCWMfs4Pz9f6jdDBeA2QxsB++23366PQFPs3r3bvlopiguF
pheRj8EU3lSAHUQCuYfAHoefNW7cGLs6d+5cbTx2Tm8VkJiYqBbjeumll0KY
vAhCRvRBfnoLIKvdCnDjxSj3J4B0NcI7qABh7ty5wUr8ggULPrKYP39+sOIM
ADUwCQ1BUCL0pgJWrFih7IMHDw7uuxUH/L0HagdvKkBpgZkzZwbrXCjt6y2i
o6ODFWcAyGKGwO12ByvOsK1LqQLCUAWUW15xF+trwt0t9KugVAAqef0Q+BUw
QkvK5r59+2TVIH3CbLnlW+7fvz/oKkDm+V5yySX6GwqcRYa1GC73TTfdVK9e
vffee89lvfWTVJ155pnPPvvsjTfeiLpOObFo6VzaekGCDB2sVgX4mCScy3Cb
UcLSYT5u3Dhv+ZUHp3379roRIuL9998XBxsKTp5uffwMXFZ53n1RAeCf//wn
9sbHx6NMLr30Un1EjaynesUVVxiLyubk5MDldvjegTi3uDcMuzHvQBUFYlPz
plFoLtvS/arl0lUAEiARQjh4nKSAmGXJI0M7QPC6rCVP/QqmY1cBKJNXLQwx
IhOi1Zq0Bvfdd5/L8a2KA6exCkAZXn755WL8/e9/jwcntCmMFKpVAfr0q6io
KDHKkmjypBvhlQrALQpfYtmyZXFxcfj77bffVh4sHr1TmKXaBa64ytopVQG7
d+9G2yTGjh071uYd7u89UDsoFfD8888PHz4cFSyaDzTWqt++bt26p9mchfr1
69eCCgiTupQqIDxVgKwLJEybNk3fpa8Uum7dOvH3tm/fLtN+ZWpqueXu9u/f
X0YTKSGQkpIiB6rOz8LCwsmTJyOMx95awRcVgNPJoPEmTZqIs4qEybRfuwpo
0aKFy+on1ye3NmrUSJaR0f03WZTmtttuU7JlxIgRMi6lWhXgY5JQrbmsabby
6a5yS5LIuB1jLLoOrp3LmlOsblc0TDLxVjnY8r4AmRVHHclD1vxSAbNmzcJe
6aV/5513jL2ySj9qZiVhFi9ejDJEbePwFkPO+Morrxh2GYuF+nzlypViyc/P
lwSrj2fJYCqUtnodgBtP1WO6oy7yDVrP4fO7Uvk8+uijanI6bkIptNdee83f
YAqP7wJkwR+0XOq9Bp4FeS/jcYEg3CrymQm/ZtAoak0F4NLj6ZbmAw0W4ocP
I7t++OGHefPm4ZZQwydgKbBQEw8NUDgS4KeffhKL0XIhhj/96U9iQenhNvaW
MIRMTU2dOnUqvFOoSHsAPBRyLo+zTb///nuHpELWoQBjY2NR3eEOrLWu2ppQ
rQoQXS+gThYjbnux3HvvvUZ4pQJQBen2TZs2eezfRjnvs8BzLRa5Rqje586d
u2LFCpS2Cpydnb3PE8bgeYBqVnZ59APVSaUrwNiLahm5Xrp06fz589euXetx
rBHuXiQMtWtmZqbKF5JtJMxjkeIoPL94CpA7VET20R12FYAkoY0QC0rYnl/f
I0eBSNo8jl/CsyZ7UdTK6O89UDsoFfDFF1/o9tWrVyshgKZK3yUPr37FMzIy
vv7660mTJqHt+PHHH5UdD3iBJ1A/GMnAUc7VlzrWY5WCosZtBm8KVw1X2Vtm
UfWhIlVXAVWcnipvUyGqre4qwrUurTjFKmBeJbqH/30lRhg9pEPMvizvaXfm
Pa4U6kswX5RCAOVTrQrAXdqzZ0/x2I1vwioV0KdPH1kUSP4AQ4YMUU5OufU6
QEWCXSIKulR+fUxQckNfUNRAVECdOnWu8YTqaV+zZo248RdeeOHDDz8sziFa
PbsKiIuLk5tf92w///xzMcItV8aNGzdKPdOgQYOnnnrq1ltvdVnD1H1RAT4m
CY+8CH/8Cy8RjbWswHn33Xd7KxBBRhZJhA8++KAs3Q/dodRE9+7dJcAll1zy
xBNPXH311RdccIExjsVZBeBaq04JVLnG3vT0dFkR6KKLLnrsscfkHYerumVt
UKQuq1vJvguXQ2K4/fbbGzduLOWABKjVUMsrlxJyWarwnnvugQ5CMEmGUgEQ
laoWvdqGejmClMgpoLleeumlf/7znzJDGapHn3DhYzCFRxWAJv7cc891WXIP
l/j3v/+9JA9Z8PiJZPnGmX0JJh+pNRUgS7lC4/To0UPmqoB+/frBsxKN47Im
ZUjjJUtySUnqDbGA6kLaKfyLghWj0XLJ+zsJYzifCpnLo9wDVc64PVQYnF0u
IsD1skciHxN0WetK6Xa4Sc8995z0AyggXf/1r3+FyVxCtMgPPfQQLoFhr1YF
wFdUpY2HXYyqHOyjBbypAPDpp5/KLuVJVlgLMIpxwoQJ2ITX/f777+sjiNCU
SEhcHW+jjHCIcS5U5rLr3XfftbsZaWlp6lioeDHCV0lKSkLVZ48flb8uRgAs
3hKjwG1pnBfnio6ONoK1bdt2w4YNRpnrKgBycsCAAcqSnJzs8Ur5EjkqAfVC
wfCQBRUDMqinx697oHbwpgKAfGrHZS3Zp4zylUZX5QTndevWoQrSH1i0syqw
fGvGzo033mica9CgQbILTZK9+oKfLHvhqOTk5Cg77nO09WqGtYDGGs9IeVVZ
iutl1Fp27K9jfKnuhHCrSxW1oAKMfv6fLZQKmGuhwv+PqAC00XC8Y2NjHcLA
YehiLfVpjN7R1whSa/706tVr+vTpah0hxfbt26dMmaI+MYzYEhMT9eEieF7Q
YCHAtm3bvKVEFvn3BmJQIefMmQNnW25auN+oGcaOHeuy9TyjnheXTJ+BC49d
IjRGekODqM/josbo3LmzfH9KVwESm8d71ZckoSSffPJJ9c3cyy67DJWzMZLK
DooRygX1mzzdEBrQKcYIc1SD6svFEAi4w+Utg1qTX5SCNxVQXvneBM6Dx70r
V67ESVUlAJ8QrZjDcCChYcOGCIzq0bDjTuvQocMf/vAHyRF8rX/84x/GUBwU
Cwrn//2//6dqpJSUFLlAaqIK7jSHG0afVrB161a0I6p6ROX86KOP2mcf+xhM
kJc7UCuGHemUtyqq7kWrmp2d7TESeQlljH3ynVpTATKlHf6/7hjXq1dPzSgU
8OAjcF5enmpzUfkYUUFHyC4oSmXUW65JkyapCHHne0wPbmwZTWcHV00fVf7R
Rx+J/bbbbjMiwQ0sw8CMgsIV16fwGyCpqANrVpw1BU+H8otQbeq7qlUBQCoH
oPrV1UXBg2kEdlABnTp1kl1oIJRRqYDBgwfjWdAHDglqdLdfKkCfO2yfkjxi
xAjZpcsiyA1v8QM8evrLnQBUAFo9h0kTCQkJKqShAuCuq01v95LvkcfExIgR
jpzhtaJyUOVvuIt+3QMBgCd06tSpfh3ioALUwmtowpRROQy459HKqO4IhRrs
BFSza2BXAXBv1BD6r7/+2tgr64cDNIjKCL/XW3XhqipGQLNmzRwCC4YK8L26
qwizulSHKiAkKsAX4KzCm1Lf0lIoFSB9mIWFhfDDncf5Yy+8UzW6277Xr2kC
1ZKbm7tp0yZjlf4agvRv3rzZWGoyuElCIeAUDiNYvIHaCW6qg++NvRAa1Trn
AYOUp6Wl6Z+NdiY1NRV177///W9vAdAAoW0yZhwYwOd3+KaDX8CRWLBgARpQ
/U1WwMGcwfVFC4J4lBCzgycLku2OO+4I+H6rZRXgsiQblKze4D7++OPyDgU0
btxYwqsOqD//+c9GVEoi6XP9VMvVvn17eY3lsj4td+zYMXti4LzJklAuS3FD
AkPmjx8/XlSny/qenRodceDAAdXHZayPpz75ffvtt+t21dghs3369IEExnWE
eykT3nGW0H7Tyu12q0mFeLiMt/O+qID7779fik4Vr4w8BKNHjzYCe1MBuLGV
h6kXrFIBQAVo1arV0KFDR40a9cknnyh3FNcRIjFGQ03LtauACmuRE9mre3cV
Vk/mu+++K7uSkpKUfcmSJWLs3LnzlClToB3gA+AGU8lbsWKFCozKStKAC60C
oDT05OnTLfH0wVuWYDg7diHjq1atgq+lsqyeTV0F6G8B3nnnHXtvs7+RZ2dn
qwiN533hwoVi//jjj43xbH7dA/6Ce0NGyeovIKrFmwpA/S9fYwS6slAqAOdS
NdLFF18Mr/ull1664YYb9NKARNJl1B/+8AcJb1cBQA2pffrpp3U7Lpbq99An
xStnG9G2aNFi2LBhuEV113rRokUqsNKATZo0UQFef/11PXnt2rVT4f2q7irC
rC7Vqf15AcaIII84xHzaqwBcWXhfaODg53fr1k3vaRcMFUBIAAwcONDlZYVM
gqoeFe/GjRsDjqH2VQB8kgqrE1g24XNWaO/Q0QhK+B07dqi3BnonpFqp+/LL
L9f9H9VyGRgd3cKIESNUAORU2eGcq9dV48aNU3a0sGI0OuVkAjsYPHiwbv/7
3/8udruEmTdvnpoQUS1xcXEtHPE2stcBSFS0s5K8N954wz5VwRcVIGEgx5RF
vSHVO5kFpQLgsaPJwP22Z88eXBc4DMpp2b9/vwqvq4C3rBEsaWlpagKIM2iU
HVTA2rVrVbT62H44JGJs06aNLtBw0okTJ+L20/0f/Z3C2LFj7WfZvHmzCuAw
OxgaXwXT1QQaVjVER/Wj6irAIDExsYaRAygsMfbo0UOPR6kG+3scv+4Bf5GV
5VzWizM8rT4eZVcBBQUFeOLUV+NRpezatUuFNwYP4HA42z7eaTiFHOVRBUA9
yV44vWqAWYX1RIv9yiuv1NU3HkM8zka5QZ3J8F2X9aUe+1lwP6vEO8wO9re6
C6u6VIcqINxUAO5ANfnX41h9qgASFAYMGNCgQQO01KFOSHiB9vrqq69GE1+T
SGpfBaxatapC6/tCc1lhOW+yqTuf8qE08Pbbbyujekfw8ccf6/F7a7kgK+yO
ror5j3/8o7FLvZrXm135/rXLGtGkpmEeOnRIJjicf/75xhBxNbUf4Fy4dX10
LQzUjB5vbNu2za8I4fqqNynNmzf32LnniwqAP9DF+s6jshQWFkptr/s8QrUr
hRrD0XUV0KpVK7+W2XFWAbgKSnroL5LwKIkRzqe3mNGcQZmuXr16zpw5ypE2
fGbBRxXQp08fCdOxY0e4TD9pDBkyRHYp98lBBeAmsc/q9SvyCmv4kIpQqdR9
+/aJBQ+gcYdX+HkPBIBMm3JZQmDkyJG+HKKvFFq3bl0Zf6vTs2dPIwtqV/36
9XUpWi3OKgB1jqzjDfSlROH6itF50BT8/5UrV06YMEG+humyVg6xB/NRBfhb
3YVVXapTCyrge5+hCgCbNm3Cczp58mRv36UtKyuDLxEbG1uTcRGElFtzLq69
9trAnvHTEvgwjRo1cvgYnI/UvgqQuYTyjQxX5Ztu+SSH4XzKIqsua/qAzBqG
PyPzu9FO7dy5U4/faLnkcx6CvcNWNdA4ypgSrl5YG82ufLUNdOrUSSz9+vUT
y+uvv27EDy9IDRgQLrroon/9619Tp071tvyFR+AqnO2I3rFZLXv37lUTl955
5x2PEqDCNxXgFw4qAO40GgjDtdBVgMeObgecVQDAgyMB2rVrJ+c9ePCgOp39
80+4XoizW7duHtOvTzVV+KICcOpqxRHo1auXhLergP79+6u/jcHn/kYuwEMW
u1IH06dPF4vHuZw1BInMqI53331XPaejRo2qNk6H7wWgDlHfNVDoKmDatGl+
pd9ZBYCoqCgJcNddd4klLy9P+vbt1VeFJVHxLLzwwguqC12nYcOG9lP4qAL8
re7Cqi7VoQoINxVASG1CLalTalHzeMJZBYAHHnhA7EOGDKmwxjnI5t/+9jcj
fr3lkncHamjulVdeqS9wDfdDzd1zQM1QEBISEsSOjEjHvvLz1RopOvAeu3fv
rmbcK37961+fCp+qWuB1yEBrABfRIeSpUwGffPJJX4vo6OiYmJiFCxd6XM9Q
VwEOHYMeqVYF6ON5Nm3aBMtXX30lm3D1jcDZ2dlIs+4549aCRb1QCFgF4NGz
z3p2cNQNFSAD75UQgJhSq6oGELmgih2x4XnBY/Lhhx+K5VSsapWVlVXtM6iD
B3zMmDHOcSoVAM/8IYsnnngCUmLgwIEenWRdBfglzyt8UAH6HGEZ06jebvzl
L38xAqMS/vOf/6znF8def/316kNsd999t/0UvqiAAKq7cKtLFaeBCvDo4Ru/
gMWCL0cF5icQQk5XwlwFqA+93XnnndhUq7/qA1AF1XI9+OCDMl8AzphakrRz
5856YPWe/f7774/2Qnx8vHGKO+64Q46aM2cOIpe/HeayVVj9e0uWLIEbbKyh
Af8twHIMFFzHevXqydk9jmNRnDoVYB9b7pFTqgIqNOd53Lhxx44dU36+MV0R
Hk67du2UYwyxsHv3bhnLHRsb66MKcPhGlVr+9KOPPlrihdTUVAmsqwCoFZm8
sGvXLmU0Omn9ilzlV00oRlGoXNjnBQcFf1WAy8vYeB2HNYI8ckpVAJCPabqs
dQIrKudTA/vAs0aNGsmuCy644LPPPtuwYYOUuSwB5/JBBTiMPfO3ugvPurTi
tJgXQBVACAkrgqgCysrKPH51SAhMBaApVB8kRUpkwYoGDRrY10Xx+NV79S67
bt26+mxQNTr3kUce8TF3FdaCinIUGnc0hfK3PujXAXibCQkJv/nNb+SoG264
wZejRo8e/VdHDh065Hv6k5KS1EIo3bt39xbstFcBKSkpEqZVq1Zbt27VO8D1
YHv27FHJgKOi73JWAWo4/VuVrxs8opb6wb1U7bQRj98OBsOGDVN29e0MfyNX
LF26VI6KioqaOHGi/K0vZRNEyq1vOzrz2muvKS/37bff9jaGTRFuKmDBggUS
Bq6y+soJnsHyquv/o2pSyVi3bp2+y1kFQJaqAzdu3OgtGf5Wd2Fbl1IFUAUQ
QoJLUFRAUVHR888/Dxe9Tp06L7/8MupMe5jAVECFtgaF6k435gULHluuvXv3
qkU20ILY43R56hiHy+exCxfSQ9wMxCmLpZ933nke3dQxY8Y888wz9s/xfPLJ
J3LSevXq2Y+yE/TZwWlpaWpR1q5du3oMc9qrAFxHteqjWgPHPuBZ/45YZmam
GCFLly1bBvngoALgT6oDhw4dqnek68vCxMfHq2C4Yco1zxCHwKnTJ6t6UwG4
UdXgH/nWRgCRK/DkGh9o8zgvuHZARXHhhRfKvfrmm29WKwEqwk8FoKhVraW8
6BYtWhjBcEepZGzfvl3ZcaERudg9qgDcyWohNX1pUAN/q7uwqkt1akEFGJ8M
+MWCKoAQcroSFBUgX8dTePwCacAqAP6P+iy1y8vEugovLRdo06aN2NFcqu4y
VOx//etfVZwNGzbs3bs3koRW7LHHHnNZn3LzmFM1i0147bXX7GHg/MsHhpCk
Jk2aoHCmTp06Z86cLl26qMW3H3/88WpLtcL6bOsdjqhFNnxn69atylny+Bmg
014FVFi391tVQbEYYQ4cOKD2tm3bdsiQIaNHj4bbrx/lUQVUaIsOAVz3mJiY
KVOm4OaBB1he6ZBDEejBcArcgXFxcRMnTpSROdirXF9vKgCMHz9e7VIfBfYr
cp3Zs2frGZT5OLVPUlKSkgDNmjXzRQJUhJ8KAPK1TR17pz0Umdr7u9/9DhcI
Cl1NoRU8qoAKbVFil/UZ+n4WzZs3R3hVaP5Wd+FTlxpQBVAFEEKCS1BUgBqu
L7Rq1coeJmAVUGEtWq4if/TRRz2mwVvLlZOToz4YhNZK2eE/q2Xz7aCZsy8X
U2G99VAfuHRVrnpqACcNufAWs8tak9Duc9YmyJrqY4RIMfb+L6gA/TtZ4NNP
P7X7mWj99e9z6ahvk3lTAfrUAAP9DdHhw4dxam8h39IW7XRQAW63W33yDLGp
1w2+R65TWFio1kF969TMC/aFJUuWiJT2+EkLb4ShCjh48KA+f9abM6+m3xqo
abPeDkxOTlYj9g10ueFXdRc+dalB7asANSJI/2owVQAh5LQhKCrgm8rV/oU7
7rjDHkYtdmGoAJmS6awC4M+oyGNjYz2mQTW1RstVUfVVhe5B/fTTTwMHDpT3
0Yp69erB8cjIyPCW2bfffltC3nbbbd7CwG+ZNm3aQw89dPHFF+uRw7FB5P4O
4zkVHDp0SH1KSf8sacUpUAFqkImPKiA1NVV5of6qAPh1cqCzCqiwuiLVWfTv
Z+kUFxePHj1a95whSJOSkuDAOKuACuudi5psq+jcubPhV//44484u1qNR2jR
ogXOu2/fPhWsXFv2x1ABFdZ3V9Wxa9eu9Tdyg+HDh0tIiJ1TMS/YRxYuXAg9
4lcC1PAbH1XA0qVL1bPprwpQI2GcVQB4+umn1Vm8fQoZ4qtp06ZqeA/+uPPO
O1EJw/8UozcVUGEJgVtvvdXwvfF061+Lq/CnugurulQn4lSA3VHv+nKB8fNR
KXhbaNT5Zz9dgI4CIeQ0JSgqAC31qFGj5P2vy4elHvxl5syZEvMVV1xhnxdc
c/Lz81euXJmQkLB//37nsQc4O1pnSYzDNy51Dhw4gJghdnbt2nUqEh8weXl5
99xzj6xeohN0FRDpwOeHcMvKynKY/O4N3FqbNm3as2cPvG5oCoeQ2IuzbN68
2e12+zgAxnd8j7y0tLR9+/Z+qTYSLPBIrlq1CjrOX0lSYdUz0E2oxyCi9WVj
7fhe3QXAKa1LT6kKmFcVhyFAVAGEkNOGIK4RlJ2dLYc888wzPh7iC2jd1LyA
3r17BzHmAFDTey+77DJjSZlIJOBvB5PTElQI6kVAy5YtA/BFCfGRAOrS2l8j
iCqAEHJ6E0QV0KpVKzlk0KBBPh7iQGJi4ocffvjkk0+ee+65Eu2VV15ZVFRU
85gD4KOPPoJTpD68C/r16xeSlNQCVAH/a/z8889w/qOjo/UZAbNnzw51ushp
SE3qUqoAqgBCSHAJigr48ccfP/30Uwl/9dVXl1ddDTswmjZtqg8xPeecc9as
WVPzaANg3759rqo8/fTTQX+THj5QBfyvsXv3bmP+woABA/RFTQkJCjWsS0+R
Cjh1UAUQQsKcmquAPXv2qI6dc889d8mSJT5W6c7cfPPNqqV46KGH0tLSghJt
AHz55ZcqJRdddFGvXr3ky62nK1QB/2vgmVX+f8uWLePi4k7vO5yEihrWpVQB
VAGEkOBScxWAalxWAX3qqaeMT6zWhJycnKSkpPXr14d8cPJPP/303XffrVy5
EnrnNH4FoMD9sH//fpR/qBNCaomff/4ZV3zbtm25ubkhXBSInPbUsC6NOBXg
y/KewXL4qQIIIQEQlBFBsbGxvqz2TAghhAQGVQBVACEkuARxdjAhhBByiqAK
oAoghAQXqgBCCCHhD1VApKiAkpKSadOmTZw4MTc3t3bOGACZmZnwc1JSUkKd
EM+kp6ePGDFi9erVoU5I+dGysr07t6atXXX4YFbNYztSkLc9My01ZUXWnp2I
2TlwZvra2LEDU1YsrPl5iTeoAgghhIQ/VAG1pgI2bdrUpSrdunUbPXp0fHx8
Xl5etYdv2bJFjgquE1tWVnb48OFgKQukDSmcOnVqUGILOmPGjEHyevfuHcI0
wEufFzu2R9t/f97iX/Ib8Onb2zJS9TCHsvaqvcZvQ9IyPSQuX/ysid3ff0UF
QMzJjh7+qoQ4BJsyvNcpyR6xoAoghBAS/lAF1L4K6G4BCaDkwJAhQ6oVAkVF
RWPHjh0xYsShQ4dqXIonSU1NlQQEJbYwVwFr166Njo5evHhxqBJw9OjR6WP6
H3fXWz4/vMeHEwd37fnh69js1vqlzPS1KtiOzHRx6bu2etH4rVk+X49wxvhB
ErJbm5fHDezUv+ObspkQ96W3NFAF1AJUAYQQQsKfiFMBvnj4PioFX4LZfX77
UT6mXFTAoEGDlCU/Pz8lJaVXr16wT548+dQUWDVs3Ljxf0cFhJw9O7bAA+/S
6oWNaxLFku/OGdKtDYwxw3qoYGkpK2GJHTvQObbNqcmVPv/UIwX5sJSWlsyZ
MgKWqA9eLcjz/H6HKqAWoAoghBAS/lAFhFAFCBs2bIC9R48epaWl2Dxw4EBG
RkZOTk5xcXFmZuby5cu3bdsmIWHfvHlzmTXwO8MCOkKP6ujRo2KXqITc3Fyc
OjExce3atfv37y+rHDeOPxAyPj4eZ+/Tp48cWFZ1VDni2bp1K47dsmVLSUlJ
tXn0qAJwLGJGvnQjMpicnLxmzZrs7GwjEkmJ/eWIPWseQcxpaWkoNwgc470J
NvWU7NixI8MTO3fuNOL0txy8sWz+DHjgE7/ophvXf7tE/Payyqx9u+QbWBbM
HO8cG+JBsNF9O+C6n0xqScnUkb3HD+qcsTHZ41G6CtizIxPnSlo6L/vAvoAz
RexQBRBCCAl/RAWcf/75qyr57rvv1F6qgFpQAUVFRTIuaNeuXdhcuHAh/o6N
jUVIsc+bN09Cdu3aFZuHDx/G38OGDcPfS5Ys0aOC+wojgrnd7nJLFMAZ7t69
uz4ZYcKECYWFheWWo9LFBhxjFRucXmgTtSsqKgqxOefRrgLmz58vg6DgXYsF
aZPEK4YOHapPTJC9ixYt0mPeu3evBIaT7+3syO/ixYuNHC1YsEAJh6VLl8Iy
a9Ys2ZRpAnaQUz3aassBumDu3LkzZ86sdnrFd/D4507b8t163ZiZvlaG9CgJ
tnjOFFhWLPzaOTYZ/7M9M805mIGogMlDo06MTar8jejd/khB9fNTiC/oKgCX
VdWun3/+OVUAIYSQMEFUgM5dd92l9lIF1IIKKCgoEPdS+qhFBQhjx46dM2fO
+vUnnEZdBaxYsUL8Zz0q6AUYJ02aJJsQdMrzj4+Pnzx5siiCGTNmlFv92xAR
MMq7gEUWyseWNxSSBnjy48aNk03YHfJoqAB50QC3ecuWLWKB5BkxYgSMffv2
/coCf2ATRuySMJK1wYMH6zFLsYwf79Q9vnbtWkkkCg0eF7Ipm7BLAEMFrFmz
ZlFVZLIGEqPi9KUcZFQVCGzGweyYYXDCR/b+yLCsToibO2304C6t+nVo/uWo
PklL55VqryGKCo/I/IKCfPei2THDe34Y9cGrI3q1XzBzwoF9uxxOJypAfkO7
v//NtNGTh3bv1voleUlR7RJDxBd0FZCcnOyyQRVACCEk5FAFhFwFwBUXr1g2
xd2Fw5+WZvbx6iogLy9PNrOyTiw1efTo0YEDB+oOKrzWkSNH4l8VgzjY/fr1
UxaP8wKKi4tFL8CNV0aRGD179tTHnxjoKkAygvDbt29XAaSvHpmVXIDs7Gxo
EBgTE08MlVdZ27fv5DCV6Oho3Z/3yJQpUxDmm2++UZZly5ahBFTMhgowSElJ
wd5evXqpQUo+lgMugcgH+yWrFnkRgN+mDUknMzK85/HpAy2fNxYImjK8lxo1
tHv7Zlj6dXhzWI+2RrDe7d/Yv3u7lxOeVAFTR5ycGiAzEfBLTU70NwvEDlUA
IYSQ8AceWmJVUlNT1V6qgKCrALDHYvfu3d99991XX30lxrlz50owcZ5Hjx5t
j0FXASAmJqaLNihIhgPBO4Xv6i0NbrdbTieDgsq9qIAdO3aIr647/GVlZVFR
UeqdhUeUCli0aJF41DLMSTFx4kTY4QLpRvjqME6fPl1ZJGtqUJAMB8LZ1fsC
j0ybNg3BRo0a5W3UkIMKwBURh1+NXPKrHKBcAlhtdd/u7bJk6LTR/XT7qD4f
y5qf8Nhzsg/u37Nj0ewY8dLnxY6VMBuSlim3H/78rq2b8t05aWtX9f3kv7D0
+bhZcbHnshIV0LXVi4VHqixvhUhgj5810d9cEDu6CigtLU20AWOIqnxCCCHE
J8JQBUQu9u8FKOAAqzHhogLmzJljj8FQAbLIpxoUJCPwv/66ymByuKZr1qyB
1pgyZcrYsWOlRx2oy+pRBaxatUqCTayKGNUIJTuiAhT24UNihzqwR4u0qWCS
KjUoSMpEBjI5oEZAgTFjxuAoSC09gDcVUFBQIK9REhISglIOvnD4YFa/DscH
9o/p37Gkqsc+fUz/Mf06bsvYqBsT4r5E4EGfvSubmzasEQkwcXBXfU531t6d
XVu/CLsx++BkpiwVMKT7+4Z96bxY2CcM7lKTTBHB2+xgQgghJFKgCggiSgWM
qWTcuHELFiwwVuYRjzcuLs4eg6ECSkpKZJXRAwcOqOFA+vAbxCwB7DirABEU
3lADbOwYKgBuvHrpAPC3Q7T6nFyVNRkUhHjwd2Zmpi+FrIbuCyNHjpS50uVe
VACKThz7yZMnG4OdAi6HasnLPRz9ecvj3ni3NkfyfZqTm5N9QNz+3MMHsXlg
3y7ZXLnYFIyj+3WAfdHsGI/xiAqYEG16+ykrFkp6/M8NMaEKIIQQEulQBQQR
b/MCDHxXAWDOnDldrEFBu3btskcuugByY8OGDTk5OXCt1UxkZxWQnJws/nOJ
J8q8TyBVKiAtLU3W1YmJidFd6/79+3exRt14jFmPavbs2V2sQUEQAvgDBzrM
RzDIy8tDAqZOnSolhjSI3aMKkAJH0dlv9YDLwZnCIwXDe3wIlzv68xbuHHOh
VLBn55Zd2zIM44npwC3+lbX3+EKmJSXFsrn+26VGyElDuuljhwxEBQzo9LZh
j581EfYvR/UJLFNEhyqAEEJIpEMVEEROhQqQuQDDhg2TXmt9QEt2drY45Hv3
7lXG9PR0jypgwIAB+onE8YYbD9Wg2w8ePKh/ccCOqAD5Ahr8cDmXvuYnPHNY
kEf9qMLCQkRrjKuXMfmDBw+WKQb6/FxvIMsoHD15Mhu6d+/esmlXAVIgUVFR
+kzkmpeDAyXFRWMHdIK/PfCzd3OyD9oDFBcVdmvz8vElQDdXmWucsTFZZv4q
NTQ06gNY5kwZoQeDWJC5BunrVntMgJodvE+bQVxWWjq853FhsnRebACZIgZU
AYQQQiIdqoAgcipUQHnlaBmZr6p/gauoqEgWrlGL22dlZcnbAV0FZGRkiEWf
xgv/Vjrtx4wZoxxgWUKni7YqkR1jpVC16imcbbEkJSWJZcOGDeLNwvkfPXo0
LNOmTTNiU7MYnE+q0gxvv4s2zxrxy7uSsWNP9IobKgDOfM+ePWFZt26dtzh9
KQeoGAgfhHGYN30iwtLSmGE9xAnPPrjfW7Bpo/rKMp6HD504xcH9u2Xa75cj
T/bVb9qQJFGtWb5ALJAA4wZ+JusLeVv8X6mA6M9bSPzFxUVzvxwlxp1bNzln
gfgCVQAhhJBIhyogiJwiFSCere7rKmTlTOnqHzJkSBdrBSFDBcAJF7EgaYNj
LPZ9+/apwDhWnOEuttnHBoYKgB8+adIkOa/ymeGES1S9evUaNmyYrMyDv/fv
N71iWUO1S9UF/B2QtwZdrKVQcV4lItQkZUMFqHm+w6uin86Xcli/fr0Yq31h
sdz6dvCJX8vnjZ+az7tnR2avdv9BmO5tXh7Tv+OIXu1l1dCBn717+GAVNTR5
aJTENuDTt8cN7NT9/VdEAtiHCSlEBfRu/4Yc2L/jm92tVw/4LZlrCjESGFQB
hBBCIh2qgCAive5ffPGFczBxZT2qAHGYjWUwIQrEBU1OTjbCFxcXx8bGqm8H
w7mVYTa6Cii3Pow1dOhQkRj6t4O3b98OHaHmF/ft2zcxMdF5cL509evfDsaJ
xBtXUw9KS0vhLeufD548ebJdAuhZW7VqlcNJFUjbt99+qxx15Aj50ucUL1++
XHfgvX07GOjRVlsOuCLQHQiwbds25xQu/GqSsba//tuclqJCHty/W4boyK9r
6xfh5Odkm+8aysrKEuKmdmn1ggo5uEtL5zX/1yxfIJ8e2JC0TN4v4PdFt9aI
x/eZF8QZqgBCCCGRDlXAaQC87uzs7Ly8ahaiKbKw2+FnZmVlVXt4AOTn5x84
cMCYFKyzdetWeN3dunVDSL9ixk0LWeEQcwA4l0OZRRBPJxzJz9uSvm5bxkZv
i/8LxUWFO7duSl+32uNcYwfg9h8+lJWXe7j6oMQfqAIIIYREOlQBJCTAO4Ub
L+8LPL4WISScoQoghBAS6VAFkJCgZjH36dPH24eACQlbqAIIIYREOlQBJCRM
mjRp5MiRs2bN0lc9IiRSoAoghBAS6VAFEEKIv1AFEEIIiXSoAgghxF+oAggh
hEQ6VAGEEOIvVAGEEEIiHaoAQgjxF6oAQgghkQ5VACGE+AtVACGEkEiHKoAQ
QvyFKoAQQkikQxVACCH+QhVACCEk0qEKIIQQf6EKIIQQEulQBRBCiL9QBRBC
CIl0qAIIIcRfqAIIIYREOlQBhBDiL1QBhBBCIh2qAEII8ReqAEIIIZEOVQAh
hPgLVQAhhJBIhyqAEEL8hSqAEEJIpEMVQAgh/kIVQAghJNKhCiCEEH+hCiCE
EBLpUAUQQoi/UAUQQgiJdKgCCCHEX6gCCCGERDpUAWHLnDlzZs2aVVBQ4Few
9PT0ESNGrF69uoZnz8zMnDFjRkpKSg3jOUUEK5s152hZ2d6dW9PWrjp8MKvm
sR0pyNuemZaasiJrz07E7Bw4M31t7NiBKSsW1vy8xF+oAgghhEQ6VAFBZNOm
TV2q0q1bt9GjR8fHx+fl5fkbW+/evRHDvn37/Ao2ZswYbMIYSAY04GAjnqlT
p9YwnlNEsLJZE+Clz4sd26Ptvz9v8S/5Dfj07W0ZqXqYQ1l71V7jtyFpmR6y
rKwsftbE7u+/ogIg5mRHD39VQhyCTRne65RkjzhCFUAIISTSoQoIIkoFdLeA
BFByYMiQIf4KgcBUwNq1a6OjoxcvXhxgHioJcxUQrGwGzNGjR6eP6X/cXW/5
/PAeH04c3LXnh69js1vrlzLT16pgOzLTxaXv2upF47dm+Xw9whnjB0nIbm1e
HjewU/+Ob8pmQtyX3tJAFRBCqAIIIYREOlQBQURUwKBBg5QlPz8/JSWlV69e
sE+ePNmv2AJTAcEizFVAyNmzYws88C6tXti4JlEs+e6cId3awBgzrIcKlpay
EpbYsQOdY9ucmlzp8089UpAPS2lpyZwpI2CJ+uDVgrxcj0dRBYQQqgBCCCGR
DlVAELGrAGHDhg2w9+jRo7S0FJvw2DMyMiAQ9DDZ2dkw7t27V1mUe19YWJia
mrp8+fLMzMySkhIjckMFHDp0CPEcOHDACJaTk7Nu3bpVq1Zt3769qKio2rx4
VAFbtmyxR46Yk5OT16xZgywYkWRY2F+CiF1KwwHEnJaWhoxv3LgR+dJ3Gdnc
sWNHhid27txpxImTbt26NTExEXmxF6bvLJs/Ax74xC+66cb13y4Rv72sMmvf
LvkGlgUzxzvHhngQbHTfDkePHj2Z1JKSqSN7jx/UOWNjssejdBWwZ0cmzpW0
dF72gSDrQeIRqgBCCCGRDlVAEPGmAuB1y7igXbt2YXPmzJn4e+nSpXqYFStW
wDh9+nRlEfcefnvfvn3VyCJICfjb+oGGCkC02Jw1a5YK4Ha7hw0bps9W6NWr
1+bNm53zYlcB8+fPl8FO8K69xTx06NDc3JMd17J30aJFesxQOhIYTr63s8MZ
Xrx4sTHJYsGCBUo4GNmUaQJ2oqKi9Gjh/KMA9b2QGHoA6IK5c+fiAum58Mh3
8PjnTtvy3XrdmJm+Vob0lFVO7F08ZwosKxZ+7RybjP/ZnpnmHMxAVMDkoVEn
xiZV/kb0bn+kwO95KMQvqAIIIYREOlQBQcSbCigoKBC3U/quHVTAtGnTlEXc
e/H8YY+Li4uOjsZm165dt23bZgTzpgIKCwvFFYfnHxsbO3v27AEDBki09n5y
HUMFxMfHi9u8ZcsWsUDajBgxAkaIlK8sRK3AqN41SKYGDx6sx7xw4UIYx493
6h5fu3atJHLOnDnQQTNmzJBN2D1mE8poUVVkUgYSo+KUNzJg7NixUDTjxo2T
TdhVmI0bN4oxsBkHs2OGwQkf2fsjw7I6IW7utNGDu7Tq16H5l6P6JC2dV6q9
higqPCLzCwry3Ytmxwzv+WHUB6+O6NV+wcwJB/btcjidqAD5De3+/jfTRk8e
2r1b65fkJUW1SwyRmkAVQAghJNKhCggi3lTAkiVLxFuWTb9UQPfu3eUNQrnV
Uz1y5Mgu1lxjI5g3FSAuN3TE/v37xVJWVibeu/7ewY6uAiSSnj17bt++XQWQ
vnpk6vDhw2LJzs7u06cPjImJJ4bK5+XlQbN0qTptQbSM8uc9MmXKFIT55ptv
lGXZsmXIu4rZ/spDJyUlRYSPGqRUXFyMkoQRckYFmzdvnuRLjcPJysoS+ZCW
5l+3fHnliwD8Nm1IOpmR4T2PTx9o+byxQNCU4b3UqKHd2zfD0q/Dm8N6tDWC
9W7/xv7d272c8KQKmDri5NQAmYmAX2pyor9ZIL5DFUAIISTSoQoIImqNoD0W
u3fv/u6777766isxzp07V4L5pQJ0r7XcmlMgsan+dmcVMH78eGwa414OHTqU
lJSkBvZ4RKmARYsWiUetxIgwceJE2L/99lvdCF/d0BcxMTFdtEFBMhwoKirK
eW4CygHBRo0a5W3UkIMKQMmLw69ncMeOHaJZ9IH3EERIiXpHI0C5VDscyM6+
3dtlydBpo/vp9lF9PpY1P+Gx52Qf3L9nx6LZMeKlz4sdK2E2JC1Tbj/8+V1b
N+W7c9LWrur7yX9h6fNxs+Jiz2UlKqBrqxcLj1T5qAQigT1+1kR/c0F8hyqA
EEJIpEMVEETs3wtQwDFWY8X9UgFGpzQiERdXjedxUAHweGV5oq1bt/qbF1EB
Cn3YjCB2xD9RQ4zR0dEqmIyxUYOC5LXCjBkznM8O9aROPWbMGBwFSaUH8KYC
CgoKBg4ciF0JCQm6fdWqVRLbxKqIcf369eU14PDBrH4djg/sH9O/Y0lVj336
mP5j+nXclrFRNybEfYnAgz57VzY3bVgjEmDi4K5l2jCerL07u7Z+EXZj9sHJ
TFkqYEj39w370nmxsE8Y3KUmmSLOUAUQQgiJdKgCgohSAWMqGTdu3IIFCzIy
MnTvzi8VsGPHDuMs4uWmpqbqwTyqADUrOSvL78/aGioAbnxhYaHai7+96Z0u
VefklpSUiBKRFCIe/J2ZmVltAlCYaui+MHLkSLfbbc+mAqpHHPvJkyfrff7l
lVObvaEGGgVAXu7h6M9bHvfGu7U5ku/TnNyc7APi9ucePojNA/t2yebKxXOM
kKP7dYB90ewYj/GICpgQbXr7KSsWSnr8zw3xFaoAQgghkQ5VQBDxNi/AQFSA
MdQnISHBowowxs8XFxeL46rG+TuPCEJiugQ0yl2pABwr6+rExMTornX//v27
WKNuSjyhRzV79uwu1qAgGc6EAw0X3YG8vDwkYOrUqTK/AGnwmE1BXjQgy/Zb
Ojk5WXSEx9SWBTqRtvBIwfAeH8Lljv68hTvHXCgV7Nm5Zdc2c+TVienALf6V
tff4C52SkmLZXP/tUiPkpCHd9LFDBqICBnR627DHz5oI+5ej+gSWKeILVAGE
EEIiHaqAIOKjCpBJqaNHj9aNMn7ergK+/LLKp2PT09Ols105rs4qQAbYQ3fo
kWzevDk2NnbJkiUOiRQVIF86gx8uikBf8xOeOSxwvPWjCgsLIU+McfUyJn/w
4MEyxcCQPx7Jzs4+fPiw7pzLuxJk1mM29ZLx+AE1ESCQMwUFVYbQHzx4EAkO
TAWUFBeNHdAJ/vbAz97NyT5oD1BcVNitzcvHlwDdXEWFZWxMlpm/Sg0NjfoA
ljlTRujBIBZkrkH6utUeE6BmB+/TZhCXlZYO73lcmCydFxtApoiPUAUQQgiJ
dKgCgoiPKmDdunVdrAU/MzMzxQ8Ui0cVIONV1OfGxKh/hthZBaglN+HVi6+b
lZUlhxgOvIGxUqh0swM422JJSkoSy4YNGyQXcP4hbYxcCLIukFDt8CSkU1Ko
5lMj/jlz5nSxFvn0mE048z179oQFJektTnl5MWbMGCUEZCkhPUlQMShbhLF/
ds2MsLQ0ZlgPccKzD+73FmzaqL6yjOfhQydOcXD/bpn2++XIk331mzYkSVRr
li8QCyTAuIGfyfpC3hb/Vyog+vMWEn9xcdHcL0eJcefWTc5ZIDWBKoAQQkik
QxUQRHxUAfCW1YfA4JrKOH+Z82tXARISLm6/fv3UIWp4fLkPXw2Li4uTA3v1
6iXnAohNj8SOoQLgh0+aNElSonxmnEXFPGzYMMkC/lajlRSyVmqXqgv4OyBv
DSSdOK8SEWqSspFNNc93eFX006GIRCl0sZZaFVEAvv765Ce91q9fL8ZqX1gs
t74dfOLX8nnjp+bz7tmR2avdfxCme5uXx/TvOKJXe1k1dOBn7x4+WEUNTR4a
JbEN+PTtcQM7dX//FZEA9mFCClEBvdu/IQf27/hmd+vVA35L5ppCjAQXqgBC
CCGRDlVAEMnIyIAD+cUXX1Qbcs+ePfpXd2NjY2VegD50R9zUzMxMGdUjA1qm
TJmyd+9ePSqRCUoFLF++3PBsy8rKFi9eDJdYRRITE+MsAcoru/r1bwfjPhFv
XH2toLS0FN6ynpHJkyfbJQA4fPiwBFi1alW1hVNuiY5vv/1WOepdu3YdOnSo
PqfYyKa3bwcDPdrt27ejAGW2siisxMREfZJCTk4OdAcC6N9l88jCryYZa/vr
v81pKSrkwf27ZYiO/Lq2fhFOfk62+a4BlykhbmqXVi+okIO7tHRe83/N8gXy
6YENScvk/QJ+X3RrjXh8n3lBAoMqgBBCSKRDFRBCCgsLDx065LxyvoAwCFla
+Z2pwMjPz4eXeyr8Q8R84MABY1KwztatW+F1d+vWDSH9ihk3J2SFQ8wBAH87
KysrL8/zMJsyiyCeTjiSn7clfd22jI3eFv8XiosKd27dlL5utce5xg7gsh4+
lJWXe7hmySS+QhVACCEk0qEKIKcUeKdw4+V9QVxcXKiTQ0hwoAoghBAS6VAF
kFOKmonQp08fbx8CJiTioAoghBAS6VAFkFPKpEmTRo4cOWvWrOxs/4a4EBLO
UAUQQgiJdKgCCCHEX6gCCCGERDpUAYQQ4i9UAYQQQiIdqgBCCPEXqgBCCCGR
DlUAIYT4C1UAIYSQSKeQKoAQQvyk8HjVWRjq+psQQggJnEKLULeohBASSVgV
J98FEEIIiWCOUAUQQoifSP9JqOtvQgghJHCK0JIVUQUQQogfFBYVUQUQQgiJ
aIoKi/gugBBC/KLIItT1NyGEEBI4aMgKi4pC3aISQkgkQRVACCEk0ikqPt6W
hbpFJYSQSALVZjFVACGEkEimqBhNWXGoW1RCCIkkoAGoAgghhEQ0aMpAqFtU
QgiJJI6/CyguDnX9TQghhAROcTFVACGE+IfUnKGuvwkhhJDAKSoqLCkuCXWL
SgghkUQx6s2SklDX34QQQkjgFBeXlRQXHz16NNSNKiGERAaoMIuLqQIIIYRE
Nt9//31JSXFZaVmo21VCCIkMysrKIAFQeYa6/iaEEEIC55dffikqKkKLxtcB
hBBSLagqUWEWFRah8gx1/U0IIYTUiO+//760pIRCgBBCnLEkQKn1IuCHUNfc
hBBCSBAoKysrLTn+P/xBLUAIIQaoGI8PBCqFBCjFZqjrbEIIISRolFtr35Va
YuB4V1fp8T8tTmxbO+S/431h1p5KThxVKn+fMJXIofzxxx9/If2dqJlO1Geq
jpINsZZUBi09UXedPEQdgT+Li4s4HYAQQsjpxy+//PLD9z8cLSs7LgdUkygu
/okGtNL7Lz2JkgCV7am0uqWEEBI+lJyQA6WVPRT6vsp/S5RUqKzGTlR6pUeP
lnz/ww+cC0AIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh
hBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh
hBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh
hBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh
hBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh
hBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh
hBBCCCGEEEIimp9//rmkpCQvL8/tdufm4pdr/aFjbB4PYe51nwjktgcmhJCQ
ULWislVbngJZ/8n/oSbMz89H9YhKMtT1NCGEEBJk0MAdPnzYaCndJ9pLUQSq
+XSf+J3w+lXbefJPd26VgPzxxx9/ofq5dQ/fffLP3BO9GO4Tnn6uYbfCuquI
gsM5OcXFxceOHQt1hU0IIYQEh8LCQmkc8UdpaenRo0fLCSGEWKBKRMWI6tGS
FO4jR46Eus4mhBBCgkBJSUlubm6eO6+srCzUjS0hhIQvqCRRVbrduag2Q11z
E0IIITXi559/ysnJyXW7KQEIIaRaUFW63W5Um5wjQAghJKIpLS1Fi1ZYWBjq
ppUQQiKD40OD3G5UnqGuvwkhhJDAyTvO8eYs1O0qIYREBmVlxztP8vI4O4AQ
QkgEIzMCQt2oEkJIJOHOO75qUKjrb0IIISRw5F1AqFtUQgiJJNxW1Rnq+psQ
QggJnDyrMQt1i0oIIZFEHlUAIYSQCOd4S5ZPFUAIIX6AapMqgBBCSESTD/Ly
Q92iEkJIJGF1n1AFEEIIiWDQlOXzXQAhhPhDft7x/pNQ19+EEEJI4BQcfxnA
dwGEEOIHUnOGuv4mhBBCAgcNWUF+QahbVEIIiSQKIAMKCkJdfxNCCCGBU2AR
6haVEEIiiXyqAEIIIRFOQcERqgBCCPEL6T8Jdf1NCCGEBE7BEaoAQgjxjyNU
AYQQQiKcI8dVwJFQt6geuLvLYuPXZ/Hdxs+XMMeDLR5l/mwHLv7z3cbPHk+o
i4QQEi4cOd6BciTU9TchhBASOEcsQt2ieoAqgBAStkjNGer6mxBCCAkcqgCq
AEKIv1AFEEIIiRR+/PHHsqp8//33FVQBVAHkdGf58uWhTkIYkZWVtWnTpprH
41EFlNk4duxYKOp7Qggh5CRNmzZ1VeXuu++uoAqgCqgxa9asadu27cSJE0Od
kJOEYZJCAh7t5s2b33777YWFhTWMqkePHihSuND2XQcOHFi9enX4VCNHjx79
7rvv0tPT4YTb9yYnJzdo0GDMmDE1PItdBaSkpLhs4FYMUZVPCCGEnOA///mP
0TzdddddFVQBwVMBu3bt6lIdGzdurJ3S85fly5df6Z3Dhw87HDt+/HjcTi+8
8EKtpbZawjBJtQ984MaNG0MC7N+/v+ax3XDDDShSeNe6MTo6+uabb5b65Oyz
z37ggQeMbnYIBG831ezZs/0NJuAU999/P3Y1a9bM2LV3797nnnuufv36kqR6
9eq1a9euuLjYCLZ48eK6desi8TUpELsKgL6wq4Bvv/02RFU+IYQQcgJRAeec
c87ASr788suKiFIBdkfdF/f++M8WzBef3x6Pc4J9UQFr1qypndLzl0WLFonT
coYNeHe5ubkOx4ahyx2GSap9OnToUKdOnYyMjKDEZlcBHTt2hOXMM8+8++67
n3jiiUsvvRSb8MBTUlJUmA0bNsh9VceG/qbGx2Bg1KhR8O0l8DPPPKPv2r17
t0iSs846q1GjRnfddZcEu+eee+xCABIAkS9ZsiTgArGrgJycHFW7vvrqq1QB
hBBCwgRRAb/61a8MO1VAsFSAARwMuP2QWqeofIKLqIDf/e53ARwbhi53GCap
lpk5cyZKoHXr1sGK0FAB27Ztk16Fr7/+WizZ2dnieL/++uvqqPj4eFiaN2/u
HLkvweBjP/fcc6I7GjZsaFcBjz32GIzXXXcd0iaW9evXX3bZZTD279/fiK2k
pOSWW265/PLLId59yL0HnGcHz5gxgyqAEEJImEAVECYq4NChQxkZGTt27PBo
l8EbR48exd9bt27F3/n5+Rs2bFi+fPn27ds9jnMGpaWlCJyYmLhlyxa4N36l
U/BLBSAZK1asmDx5sgxwMlzudevWJScn672vWVlZsBjuVkpKCvKlWxBg7ty5
iDY1NdWeUxXe7XbHxcXhpL4nSYFin2GRmZmJQvYls6CwsBDlM23aNLkiChQ7
8mUMkim3erb1Eti7dy82Dx48iL/T0tLGjRsH71TKBMkwjsUNAPvOnTsN++bN
m5E7H6e1ojSuvPJKlIA3FxeP/DfffIPSxt3lLRKkZMqUKfPnz4f7XW5TASNG
jMDms88+qx8i0uOqq65SlgkTJsDy2WefOSfYl2CzZ89GmGuuuSYhIWHo0KGG
CigqKjrvvPNgxO2nHwWRAuOll15qz6lEomsWv6AKIIQQEilQBYSJCkhPT4e9
e/fu8Ft0Ozwu2KVnFZ68jCCCQ9irVy81oAh/231OOP89evRQYaKioow1YRAb
/D14aA4De3xXAUiD9K8KjRs3Hjx4sO5y33nnndhEhOqQ5s2bw/L4448rC9QK
LA0aNJBNuMTwJ/XR1Ni1atUq/bxnn3027DExMXXq1JEwyo2vNknllk/78MMP
66d46KGHIKycM5uXl/fUU0+JeynceOON8OFl74EDB+SZMo4SD1wJva5du2Kz
VatW999/v0TSsWPHBQsW4I8rrrjC0DuvvPIK7G3btlWWqVOnigcu/N///R8K
wTnZ8+bN83Y1jRydc845Tz75JIx6GGiH++6774wzzpAwcKFxcxoqACKic+fO
xogaeLwIc8kllyhLnz59YIFkcE6wL8FwxqeffhpiubzSgddVAFICC0reOAqV
m/LGjV3yOuPCCy8MrAKkCiCEEBIpUAWEiQooLS3t3bs3duk94YWFhdAFMIpf
qlSAeP7wKGbPnj1gwABswuHXJ3siEgk2duzY+fPnjxs3Tjb1yDdu3CjGxYu9
ZsFHFTBt2jTxbRo1agRP9W9/+xt8cnh9usvdvn17bHbq1EkdBccVlvPPP1+t
VDN69GhYXn31VdmEQJA+5P/+978tWrS46aabsFm3bl19RRpRAeeee+4111zz
0ksvvfHGG74nCdx7772Swb59+3766ae33XYbNmF0yCyugiQMsb388stvvfWW
ZKRevXoy2N4vFQCn+qyzzoL0QDxIM5x/ZAT2hIQEdSDK56KLLoJRzSJfunQp
HHVY/vKXvyB3f/3rX8V1dx7QjsJBsDZt2hh2nLRJkyaiPpo2bdqsWTNJKoSA
EiNIwx//+EcYIaxwgSTXKHxcDpdtdrDBZ599hjBIpLIgzbAgvyh22BFz69at
58yZYxzoSzD93Y1dBaxcuVKulPGKB8pXbg+P0uk3v/kNduH5csiUN6gCCCGE
RApUAWGiAsDcuXOxa+rUqcqyfv16WAYNGiQ+jFIBkADS+VluuWfR0dEwqvmS
xcXFoh3i4+NVVPPmzYOlZ8+eyh2CL92tWzcY09LSvKVWVED9+vXb2Bg1apQ6
3QUXXGC4lzL2Rne5oTWw+fDDD8sm/EaXtYAM/kXaxPjvf/8bmxMmTCi3Bsw0
bNgQPrwaHqM8ZL30JAY4+QUFBcroY5KgrbB53nnnqU5vlAkccpzXYfmj/v37
yyOzefNmlbAHHngAxpYtW5b7qQKQfsOtFbn07rvvKstXX33lshbvkk1cwQYN
GsDy+eefqzCQMLBce+213pINkDWEgWw07Lh/XNagmt27d4tl586dEF8wqpUz
catI/78a/pSfnw/1JEXqoAIgPOUVg/4aSC70dddd56qKMWHBx2AKuwqAuJY7
AVpYDyl6E+Aq2ON55JFHsAtPmbdMOUAVQEhY8cMPP6RY4I9Qp4VEGOstQp2K
U0vEqQBfFvz0oAs8qQB7MF9+NfxegIMKgA9mDAqS4UCqr16pAGNUDNxRGHv3
7i2b8DOx2bdvX73/E55qVFQU7PBRlRHer/M6P2qNIDtNmjSRMLIcOpxGY+qB
dJgrlxue+YUXXgiHUHInvvTHH3+s++pwYs844wyPi88L77//vssaOaMsogIS
ExP1YD4mSVTAmWee6fA2xI4MUjLWk9y2bduQIUPgrpf7qQKgX4xg6enpLmsQ
i7p8srCM8t4lAHxj40BZjWffvn3eUn7jjTciwKRJkwz7888/rzv8Ak4H45tv
vimb//jHP7D5xRdf6GFwHzqrgD179siLkqZNm+p25NplddHDb9+1a5cMh5Ox
Rn369PE3mMKuAsCLL77oskb4zJw5E3UabnhIALltXFUHWRmHtGrVymOmnKEK
IOEJauCdlaBiFCMaHbEcPHiw1lICbd6zEtRX1YYfPnx4TxsLFy705Vw//fTT
Rx999JYFmpuff/65xskPI8LnmtYOuHwvVoI2t9rwn3zyyYs2pk+f7uPp5CW7
NNM1S3hYQxUQPioAwJNU43bUcCDV7a9UgDFLND8/X+zSgw3fTDYnVkWMavi6
L4gKuPzyy6fbSE5OljDSrfrEE08Yx0rvtD78RjzJpUuX4u+///3v55xzDlyy
+vXr33rrreWVPnnDhg31SOBewvOEP/baa689/fTT8kji0VYBxJ0z5nj6niTp
HndZPe3t2rVbsGCBt6nWCnFr7ePJFX6pgA8++MAeg4y9keE9EE0XXXRRnTp1
lDhSLzVeq4oY7eNqFEiSxwAyUAon1WO7/vrrXdZymg65Rhsk5e9RBeTk5Nxx
xx1ShRprcr7xxhv333+/IWZlFoB+A/gYTOFRBeDeUFcZqYXoc1njmmRloWHD
htnjgfbBLtSN9l3VQhVAwpOYmBjVhwPxK8aLL75YLKiNjfBJSUlLqrJixYq0
tDT47b/88ktNUoLa4K1KfPl8XocOHd6yIUuaV0tqaqp+VEZGRk1SDpB9VRrG
LjRhqqzQCtTwRL7g7zWtHRITE+OqkpCQgJKHS1PDmKHpVH6/+eabasOrdaF1
4Ab4ci7jOy/p6ek1TPyePXukNOACGbt27dqlyqr2tdspUgHf1AyHmE9vFbB8
+XI1KEjG9us9tEoFGONVjh49KmN7xMOcP3++w7cJjG5zZ3yZFyCutX05x5Ej
RxouNzQOLEgDaoPzzz//kUcegfHll18W33jcuHH4AxW+BC4tLYWHrD+Gal6q
XQUY96rvSXK73ag8r7jiCnWWq6++2v5FKgU0wllnnYVgeKK9hfFLBXz44Yf2
GGQW83vvvVdeuZoNBJTa26lTJ3vNpkAhe0vYtdde67KNhEeOHGKDAJQw4jzv
3bvXiFPGaNlVAK7Igw8+6LLkFQrZW5J0UPu5rFX9ncM7BPOoAsqtd149e/Z8
7LHH0D7ecsstzZo1Q0bkxZA+/0Ih96SUv79QBZDwJDY2Vj3X7du3F+Ovf/1r
saBCNsK3bNnS7nsLqGDtnozv+KsC0GQErALQVupH1dw5RzFKVMrrFg4dOtSq
VSvZ1a5dO4dKIIj4e01rB2kU7KAFf/LJJ+ECBRyzvyrgvvvusyfDRxWQnZ2t
XhmjuUGTEXCyBWnxwc0336zb8/Pz1ajX66+/Hps1PJG/UAWElQrIzc1Vg4Kg
BfB3UlKS2qtUgLGSJG5Xscslg4bF3/B4SzxRbV+3ji8qYPLkyS5rmqphh3/r
qupyb926FZZHH31UFqvp27cvjBMnTnRZ68DI3FV5U1Be6f2ee+65yAtcJlTm
EDvQCC4fVIDvSRJQJii0Hj16yMNYp04dY/FPHRkMr49yNxAVgBrYKGrpivdF
BcDRRb6uuuoqZFnGxk+fPl3tnTJlihTjEU9APXlL2D333OOyjeoBv/3tb2GH
ArXHpiZuy4e3jNnHqK9EmhkqALcZanvYb7/9dn0EmmL37t321UpRXCg0vYh8
DKbwpgLsIBLIPQT2OPyscePG2NW5c+dq47ETXBUApVy/fn3IlhrV8oRUVMia
uoYjJE8BgEA2wjuoAGHu3LmBpcRfFXDs2LFfKsFTKQeiffTxdAsWLPjIYv78
+YElWMejCii31kAQ+zvvvLN9+/aan8gX/L2mtYM3FaC0wMyZMwOL2V8VoN85
jRo18ksFgMGDB19vER0dHViCdTyqACRM+qPEZ0hNTa35ifyFKiCsVEC55RV3
sb4m3N1CvwpKBaD61Q+BRwHjwIEDZXPfvn2yapA+Ybbc8i33798fdBUg83wv
ueQS/Q0FziLDWgyX+6abbqpXr957773nsl6xSarOPPPMZ5999sYbb0StpZxY
tEEubb0gQcbpVasCfEwSzmW4zShh6TAfN26ct/zKI9O+fXvdCBHx/vvvi4MN
BSfLlurjZ+CyypPuiwoA//znP7E3Pj4eZXLppZfqI2pkPdUrrrjCWFQ2JycH
LrfD9w7EucW9YdiNeQeqKBCbmjeNQnPZlu5XbZCuApAAiRB1ncdJCohZljwy
tAMEr8ta8tSvYDp2FYAyedXCECMyIVqtSWsgPUgOb1UcCK4KkCFVyFGNanlC
Kir0SV5RUVFilIXXpD4xwisVgAchMTFx2bJlcXFx+Pvtt99WPrwvo/rt+KsC
dJQK8PFdQNDxqAJGjBihclSTtyT+4u81rR2UCnj++eeHDx+OahmNDpp41bVe
t27dwMa9+KsCdP70pz/5qwKCi0cVIOMWhEmTJoUkYVQB4aYCZF0gYdq0afou
faXQdevWib+3fft2mfYrU1PLLXe3f//+MppICYGUlBQ5UHV+FhYWTp48GWE8
9tYKvqgAnE4GjTdp0kScVSRMpv3aVUCLFi1E8+qTWyHSZRkZ3X+TRWluu+02
JVtQ08q4lGpVgI9JQgXlsqbZyqe7yi1JIuN2jLHoOrh2LmtOsbpRoTVk4q1y
sOV9ATIrjjqSh6z5pQJmzZqFvdJL/8477xh7ZZV+1LFKwixevBhleMYZZzi8
xZAzvvLKK4ZdxmKhZl65cqVY8vPzJcHq41kymAqlrV4H4Ma7/PLL7SpA5Bu0
nsPnd6XaefTRR9XkdNyEUmivvfaav8EUHt8FyII/aIPUew08C/JexuMCQbhV
5DMTfs2gUYS5CkDujh07FqzYSAQhvQcCan4x4uESy7333muEVyrAcLc2bdqk
PN7ly5eLEQ3NPgv7zb9//37ZpWbm6ioAD+OPP/64c+fOhIQEVGLbtm37/vvv
HXLhiwrIzs7e5wm0fdWWEjKyefNmJCY+Ph7VGjaNAHYVgJAqO2PHjvUWc7lV
Z0JMLViwIDU11e12GwFQmUs6kX6PMaiM4CkWi7/XtHZQKuCLL77Q7atXr1ZC
AA2cGJGXAguUjxEP7iXZpSy6CpA3Ozk5OXPnzoU+PXTokHOqfFEBcLEKPIF2
vNpc//LLL2jy8LCgkkcrbJ87Y1cBSLYa5wxvwSFy3BK4zXDv4eZEIRh7f/jh
B0mnmiFugLZPAtiPrTjFKmBeJbqH/30lRhg9pEPMdmfe7pb7srxnwLrgVKsA
1JA9e/YUj934JqxSAX369JFFgeQPMGTIEOXklFuvA1Qk2CWioEvl18cEJTf0
BUUNRAXUqVPnGk+onvY1a9aIG3/hhRc+/PDD4hzecsstdhWA217ued2z/fzz
z8UIt1wZN27cKDVGgwYNnnrqqVtvvdVlDVP3RQX4mCTUw/Xr13dZS6HCS3z1
1VdlBc67767mmsrIIonwwQcflKX7oTuUmujevbsEuOSSS5544omrr776ggsu
MMaxOKsAXGtJG0DlaexN///tnXtQXdXZ/1OrdaxTnU5btXWccaxWZ6yO2v7h
aO1MWzNtnWnHP2rVVvtq39fGGJMY01RjoyFcAgRCwEC4JhIgFxJiCBIIt4QE
QoAAgXC/JBAu4RIgcC6g/an5PZwnPFnsfc4+F04gJ/1+PGY4z1n72Wvts8/e
z3ev9axVV8czAt12220LFy7kPo4Fzqa1oUO6wPaASP8RfR3s4eGHH/7d737H
x4EqILOhTk5PJbTApgp//vOfkw6iYlwNUQEkKuUqfbcO6RyhmvAuSHO99NJL
zz//PGcok+pREy5cLCbYVQEUqNx8880LbHKPvuJHHnmEq0dNsLtEMq9xpp+C
yUWuWRVA95HXX3+dtN79999PB2r2DoFvQeGWhBx0SWEjL91I0O9LU96RCrhk
e4DJH0nkKQm8dItRS9KVQSJkCedUFUC3Qk3y76pVq0gUOGqFUxVAmuIfDnjn
nXcMjg/Fk3QD0m8VERExNDQkxTQqoKmpSTpH/P397U5GSrq7uLh4+fLlGs/x
8fFq2JaZmcn2t956ixSBxglFmLIhCSs2uvudzg2OVADBC/QssE30xxa627KF
ghm1JPf5MlarlY2qCti2bZvoHeapp54yyPtwRQXw8jd6fvzjHxu0l75E8slT
Ugu33nrrsmXL1O9XowJIEkoe99NPP03nrV3nR48e5WWMBAps6ExT43mecZFv
lHo/FA3ySUL/0n1Tv4s5UAGa5/xf2hAVkGVDyl/3KqCoqIgCb7qSGJShUMHP
NtWnZvSOOkeQzPkTHBy8e/dumUdIoHMsLS1Nlhgmb3QhUoeL0EUvLCyMCrS2
tjqqCU/y7wjyICXpCkbBNsfkdJbSbzwpKWmB7skz3Qg4JFMzcCliZ4eakd6k
QWR5XPp50vWf159SVQB7s3uuulIlOpLPPfecrJn7ve99j+9Wjg4IQ4eRlMvj
jz/OPy4SGqRTNCPM6R4hKxeTQKBzm3sZZE5+VgqOVMDkdL8JCQ27nx47dox2
ylHxAtu0qBs3bjQYDsT87Gc/o8KVlZUaO51pdC9+9NFHuUUU4f/hD3/QDMWh
w0IH55577uE9UhRdUVHBX5AkqtCZZnDCqGkFLS0tdEeQWxgpKbqk67OPXSzG
cOcOqRWNnerJvSoMeaP7I0XFdp1wJ5Rm7JPrzI0KiIqKopuaWxmIdP6rR8Du
7QBc3/AliJDxGEFBQWyhn7+msIEKWLNmDX9EtyG2UOhuVwWoU/TYVQF2Wbx4
sQS6Gq6SCqiqqqKdOtqQF4LhkqoKGBkZoX/FuSoWBJIAJLodeX7vvffkwT55
e/PNN9munweV7ub8EX1lqt2t79QD6IblegoGY6ACZLo2uvGx5eGHH2YLhShq
ySNHjsj1yq4KsMudd97pqCfFFRUgkYAGAxVAZ458BXruv/9+6QJTVQCpPFlt
56677nLUkUE/NLn3afjlL38p3Q3Dw8OiX+j81DiR82HhwoV29wIVMMcqwBUo
WKVoStbSEkQF8DPMsbExisONx/nTpxSdyuhu/adupQk4hS6D9fX1mln6ZwnV
v7GxUTPVpHerRAeBdmEwgsUR9OOlMNUg9qZPSWg4Dc49hmpeW1urLhttDN2U
6UL3yiuvOCpAtxIK/jUZBxoo5jdY08EtBgYGcnJyCgoK1J4sj4sZQ98vhSjk
R4SYHvplkWSj2Nvj820OVADJeXbyxBNP0E/bFT8Ed4QJmidv4L+Bp556aoHt
kYiMCuPxjURCQoKmsCMVQD8fefp9+PBhNs5GBSxfvjwlJWX//v0UJokxJibG
bhOcqgAKjSgQSlWQ9QIcqQC6jS5btkx2TXfYjIyM3NxcOiYsDdQ8aFEBtAnF
V7IV1d+u86KiIimzdu3ao0ePVldX7969W46hGrbRrZ+NFMCrQ0pI2lDl+aNj
x46p/t36Tt2FvmseW7tlyxbXt3KkAuiuIQ/MRVnMRgX84Ac/IN1ER5WfbjGO
vmVXVMCKFSvUM/PRRx/lTRypALofyYNKviDTFxceHv7qq6/y80k1rVhUwAMP
PPDSSy/JVo6+pry8PJEA5JnODTrH6GTmsQeaL4VzLVkdaPzIEzBHSdlznxeg
GRFkFwPP17EKoFiRoi/6jdNVyN/fX33SzmhUAAAeEBERscDBDJngn//8J91P
a2pqPPYwByqAwoPXX3+d/TzyyCN0oXDFFa+PIOTn57uyFbie4LR9igrEIv2w
dEHQFBYVQGEq3ZjorO7s7KTTRp5+/0MZmuKxCggMDJQR8hQVBAQEyEd2f0ce
ZAdTRGGsAihUk51S/dWVxfr6+kgCqAG5qAAN77//vn4wBoWvS5YskcBeHcVB
O2I7xW/i/9y5c+Lw9OnTUriqqoqNPOZT3YVb36m78Hx0C2y9h7GxsS5upVcB
9NVnZ2fL0+8bbrjhzJkz/JHHKuCZZ56RR+hffPEFRb9sv+WWW6R7RcWD7GCq
v7EK4JVlmODgYPU86ejo0LRIVIAG0nF6z3QS/uhHP5KLvOqZ3LL9nnvuEWN7
eztnTS6wDdAVu6x6cOeddzoadAQVcO2ogMrKSkn+tTtWHyoAeIWNGzfecccd
hw8fnu+KXFsEBQXdfffdR48enY2TuRkR9PXXX8sN6KGHHnJlwg36um+99Vbe
5Iknnpjlwk/AF6EY3s+2mqRYxsbG+J6iH83idKZQSfC8NAsVoJkjqKysTD6y
uzis11UA/RCkpWFhYU5z5x2pAILu2prCTU1N8mlpaen/UyBJJR+pB58uzmyM
iooSo4wpSk1N1ezCre/UAzjZioVAXFycK5uoM4V++9vf5qfiKuvXr5fCHqsA
TReVpBwusI1Q1dfqaqgAnlFwgW1BH6feHKmABfae0tfX18unJKDUj7q6uuQj
NW1ZnvMsWrRIjNJH8N577zmq2ByogM9d5r9cBdD3Tr+4lJQUR+vS0m+Bogi6
Cs1mXAQAk7acC7qCzeY3fp1B1+Enn3zSYDE4F5mz7GAKV+QKTzcpV+ZspFtG
UlKSzOsCgAEGKoBOPLoNqULSWyqgu7tbPrL7G/G6Cujt7ZU96pcD1qNRARRc
Sa70smXLqGlqYXX6IAPo1i+bqFMwcRhPP1vJF/BsalYD6EtscMbixYtFCMTH
xzv1abBewK233qoJwr2lAujIOAqbGa+rAPp2ZI90YXfqTaMCHnzwQR7NRdx3
332avHJeR4nRz7MhH508eVI2kXxqOsi8TDP55Ok76IszyLiHCrh2VAAAcwm0
pIrFxuz9zPEcQRR4sEPSdNLJDsDsERXw/vvvb7ARGRmZmpp66NAhjjFUvKUC
+vv75aPi4mJ9rbyuAlpaWmSPdXV1Tr2pKmDJkiUUfLa2topFk0ibkZHhrgog
db927Vq2c2+LZBbIigBepKenx1HEbheKJxMTE419igqg4PkZG7///e9JSkRE
ROjnR/WWChgeHpaPdu/era+V11UAReCyx/LycqfeVBVw++2304lHvw4Z+b9x
40ZHhQ3Q7Pfpp59m++bNmy/ZRp3x22effdagYj6nAlyK8F1YQWBqEQGPFhqA
CgAAOGLuZwp999132efdd99tdxAFAB5gMEeQHlEBmrEN7qoAdQhNc3Ozfkde
VwGq7nBlIL2qAioqKtgYFRXFljfffFOd76WwsFAKZ2dnFzpAMx19aWkpb7Jy
5covv/wyJCSE32rygr2CuyqAWLFihbFPgzmC9IgKUIcJXXJfBdTW1spH1dXV
+h15XQUMDg7KHl2ZRkkC+xtuuEF6KyRNmILwkZERKbx9+3ZxTuop0gGae42s
4/nYY4/RW5nc27irwufyAqACAADXLHOvAsLCwtjnLbfcYvfxqQrdT+2mzgGg
wS0VIHOHakaMZGVluaUCUlNT5SN9jwPh7+/Pn1Jo5GJDXM8LoFY4yqAU7K4d
rGb18mNYRu0mKCsrc7HCFOuKqqJgmP/Q5wV7hUnbipDGvPrqqxKRLlq0yGnq
hFsqQFYQoAaq9pSUFLdUQHBwMNu/8Y1vSHmVX/3qV1zgb3/7m9NaMU7zAmSO
UOOH7YzdtYPb29tvvPFGti9fvlzsp0+flpa6rv7oZJaVo+kWw0sU3XHHHcZn
NVQAVAAAwFvMsQoIDQ1lh7fddpvxzWJ8fPyFF16g+wLddF5++eXPDVdoBcAt
FSA5rbQVd0hRQHLw4MF/KNhVAerzTIp8ZNL+jz76yO6OZGEvCkfFoXGQY6wC
CIrbpT7kXx3b39DQQDUpKSkRi10VQJD8ESeSnUoXBJl8kqJcTVfdyMiIo0yE
nJycf8xEnxc8N5SWln7nO9/hi8wbb7zhysrjbqkAyWm95557pBuFxKM6db9d
FUCnilzE6IDL6jxPPvmk3R3JvGp0qZx0TU85VQGvvPKK1Gf16tXqedjR0UHX
bfX7tasCCDqT2X7TTTe1tbVJS+Uw3nvvvZplr6nhjq72sbGxvJVkLhvkBTNz
oAI0SwZ8ZQMqAABw/TGXKkAef9EdsKqqytgVr7gnqBO8AKDHLRWwd+9eNWT9
17/+pV8q19F6ARQeb9q0acOGDTKF/j9mDpVXUZXFkiVLSEQEBgbShu3t7Y7q
5lQFUDSu1nbZsmVUH5IDsqgxfSodE45UwMDAgOTw+vv7S+p0TU2N2liSS/TT
o8MVFRXF7a2trdVXyWKx0GFRN+zq6nL2JXifsrIykQB///vfXZEAl9xUAbx6
JvPNb35z4cKFshynsQrg4JzOAaoYBfZsoQ0d9bnIZEe8IX3LL774IgXYBusn
OlUBQ0NDd955p7h98MEHSZvQyf/ss8/yzEgPPPDA5LTicKQC+vr6+KE98fzz
z4u9qKhIjgMVIM8JCQlxcXFU8zvuuOOGG25QZwQVJiYmvv/970uVjPOCGagA
qAAAgLeYMxUgK0L+8Ic/bGxsdOpKxogymv53ADS4pQKGh4clBlaJj4+Xx/t2
VYAa+QspKSmOdkRBjrpggeBoRaRLLqiAS7b8BXXhMA1r1qyRx9SOVMAl2yAW
2aS0tFTs+/fvt9tMRp0RVGX37t1S5mrkBbtCYWEhP5N/7bXXXJ9b2C0VcOHC
BVn3VoViexlvo1cBN954oyyepbJq1SpHO6KLM6+ApsFgaJlTFUAUFBTwPDx2
+elPfyryzZEKIEg4yCZq9wFJ45tuusmRczpEdqu0du1aKfOb3/zGUc2FuVcB
MiJIXTUYKgAAcB0wNypAHqDde++9Th/1MHRdVe8g5NmVrcB/LbJYrSsqgCAp
qsbn77//Pm349ddf+/n5sUVyYC0WC0fFdBrT2SsJv8SKFSvU4Td26e3tlewA
hgJ4zdxEKvn5+U5VwCXbkLnk5GTN/KgUVebm5qqrfe3bt8+RCiCZ89Zbb/Gn
mhFN586dCw8PF0Ek4uLw4cOaKSLVZkpJV6YwvUocOnRIXdfMFWQsiisq4JJt
0JE6++V9993HE+b84he/WGB7mi2pTPRF8NpYv/71r0m4PfbYY7LVXXfdZXdq
IJX29nbJEWa++93vGqyiLqNrDFTAJVtf0pIlS6TThCHFQfpOPXNIyjlSAeTh
9ttv5081i//Sz+q3v/2tKnnogDz88MOJiYmORnUODAxIYXVlakf4nApwJVDX
h/f2pwbVFXNFYkAFAAAcMQcqoLi4mJ089NBDFCq44ueSbZx2fHz8woULeVu6
j7i4IQAu8uWXX54/f76zs9Pd9aooCjp9+jRFL25t0mijr69PjbVmCckW8kzh
YldXl9ls9pZbho4P1bauro6cTzobmi6pAaRxnBb2dejItLa2Hjt2zN0FEeh4
kkxza5Jk2qSwsLCgoKC5udmLZ84lm3CjJpSXlxvcAjyD6km1PXjwYE1NDYlo
48J79+4VZeQ02/3SVVYB2TMxGAIEFQAAuA6Ym76Ajz766PHHH/dgbdD+/n6u
gPG8QwCAeaSlpUU6Dvbt2zff1QE+AykRyQsICQlxZZO5nyMIKgAAcL0yl2sH
u+JBw9KlS7kCmzZt8mBzAMDVo7KyMjo6WhYj5lFMmtUEANBTXFy8cuXK5557
jrOSF9jyxVw8c6ACoAIAAN5i7tcLcJH//Oc/FF3w3u++++7J632MAQA+h6w+
xixatMiVxH8AZB5U5lvf+pZmJQ4DrpIKuHpABQAArlmuTRXQ2dl533338a5v
vvnmwsLCWToEAHgddcLSoKCgs2fPzneNgG/wk5/8RCTAM888Y3f6WUdABUAF
AAC8xbWpAr744ou77rqLXP3xj3/E00UArk3o0tHR0UGaHQt8A7cYHBwsKyur
qqryIKX9ulQBrkwKav/lQsyv32q+DwkA4FrBuypgaGiou7tbJlqfDenp6U7n
YAQAAPBfBVQAVAAAwFt4VwUAAAAAVw+oAKgAAIC3gAoAAADgK0AFXPsqwGw2
79q1Kzk5eWho6Grvy2OampoowqmoqJjvitinrq4uNja2tLR0visyOWG1dnW0
1FaWDPT1zN7bxdHhtqbaUxVHezo7yLNx4aa6yvSkiIqjh2a/X+AIqAAAAAC+
AlTAHKiA+vp6v5n4+/snJCTk5uYODw873by5uZm38m4Qa7VaBwYGvKUsqG5U
wx07dnjFm9dJTEyk6oWEhMxjHShKz05PCnr3lbVL/sSvjf9e1NpwSi1zvqdL
PtW8qssOqyXp68vNSA545y9SgDyXG0b4JQUHqFjaluCr0jxgAyoAAACArwAV
MJcqIMAGSQCRA5s3b3YqBMbHx5OSkmJjY8+fP++lozjFqVOnuAJe8XaNq4DK
ysrIyMj8/Pz5qsDExMTuxPCpcP3tF7YErUyOWrd+5d/orf+yl5rqKqVYe1Md
h/Trlr6oeZ04clB1uGfbJi7pv/zlrRFrwj94g98WHNjpqA5QAXMAVAAAAABf
wedUgD4s18f8+pd+K7vxvCvO9UrBaZ1ZBWzatEksIyMjFRUVwcHBZE9JSbma
B8whNTU1/z0qYN7pbG+mCNxv6Z9rThSzZeTC4Gb/5WRMjQmSYrUVx8iSnhRh
7K3xVPl0zL/j4ugIWSwWc2ZaLFkCV/x1dNh+/w5UwBwAFQAAAMBXgAqYFxXA
VFdXkz0oKMhisdDb3t7ehoaGwcFBk8nU1NR05MiR1tZWLkn2xsZGq23gd4MN
0hGqq4mJCbazK2ZoaIh2XVxcXFlZ2d3dbZ0eN05/UMnc3Fzae2hoKG9onTmq
nPy0tLTQts3NzWaz2Wkb7aoA2pY8U7tUIzWwvLz8xIkT/f39GidcE33niL5p
diHPtbW1dNxI4Gj6TeitWpP29vYGe3R0dGh8unscHHH44B6KwJM/9leNVccL
OW63TjfteOFnZMnZu83YG/mhYgkbVtP3fqWqZvOOuJBtmz5qqCm3u5WqAjrb
m2hfZUXZ/b3nPG4U0AMVAAAAwFdgFXDLLbeUTHP69OlLUAFzogLGx8d5XNCZ
M2fo7aFDh+jv9PR0Ksn27OxsLrlu3Tp6OzAwQH/HxMTQ34WFhaorCl/JSMUu
XLgwaRMFFAwHBASoyQiffPLJ2NjYpC1Q8dNBgbF4o6CXtIl8FBgYSN6M26hX
AQcPHuRBUBRds4XqxpUXoqOj1cQE/jQvL0/13NXVxYUpyHe0d2pvfn6+pkU5
OTkiHIqKisiSkZHBbzlNQA+1VHXr9DiQLsjKytq7d6/T9IrTFPFn7Wo+XaUa
m+oqeUiPSLD8zDSyHD30qbE3Hv/T1lRrXEwDq4CU6MDLY5OmX7Ehqy6OOs9P
Aa6gVwH05crVde3atVABAAAArhFYBag8/vjjl6AC5kQFjI6OcnjJz6hZBTBJ
SUmZmZlVVZeDRlUFHD16lONn1RXpBTJu376d35KUk8g/Nzc3JSWFFcGePXsm
bc+3SUSQkfsC8mxIjM09FFwHiuS3bt3Kb8lu0EaNCuCOBgqbm5ub2UKSJzY2
lowbNmzYZ4P+oLdkpI+4DDctKipK9cyHZds2o8fjlZWVXEk6aBRrUTP5Ldm5
gEYFnDhxIm8mnKxBlRGfrhwHHlVFeJZxsD81hoLwuJB/aSylBQeydiVE+S0N
W/1/O+NDy4qyLUo3xPjYRc4vGB25kLc/dcv6lYEr/hobvCpn7ye9584Y7I5V
AL+iA975bFdCSnSA/7KXuJPC6RRDwBX0KqC8vHyBDqgAAAAA8w5UwDyqAArF
OSrmtxzuUsBfW6t9xquqgOHhYX7b03N5qsmJiYmIiAg1QKWoNS4ujv4VDxxg
h4WFicVuXoDJZGK9QGG8GFlirF+/Xh1/okFVAdwQKt/W1iYF+Fk9NZZbQfT3
95MGIWNx8eWh8tK0c+euDFOJjIxU43m7pKWlUZnPPvtMLIcPH6YjIJ41KkBD
RUUFfRocHCyDlFw8DvQVsHzQf2VO4Y4AetVXl11pyJb1U+kDb7+gmSAobUuw
jBo629ZIlrDVb8QEvaspFrLqte6zbQ52eEUF7Ii9khrAmQj0OlVe7G4TgB6o
AAAAAL4CxWnFMzl16tQlqICroAKIThtnz549ffr0vn372JiVlcXFOHhOSEjQ
e1BVAJGamuqnDAri4UAUnVLs6qgOFy5c4N3xoKBJByqgvb2dY3U14LdarYGB
gdJnYRdRAXl5eRxR8zAnITk5mewU/KhGitXJuHv3brFw02RQEA8Hor1Lf4Fd
du3aRcXi4+MdjRoyUAH0jXDALyOX3DoOpFw8mG313Nk2njJ0V0KYao8PfY/n
/KSIfbC/r7uzPW9/Kkfp2elJXKa67LCE/RTPn2mpH7kwWFtZsuH9/yVL6Ht/
N5nsHytWAeuWvjh2cVS1kxOy52Yku9sKoEevAiwWS7EOMs7TJR8AAABwwjWr
AnwR/XoBAgXAMiacVUBmZqbeg0YF8CSfMiiIR+B/+umMweQUmp44cYK0Rlpa
WlJSEj9RJ+RrtasCSkpKuFjyTNgoI5T0sAoQ9MOH2E7qQO+W6ibFuFYyKIiP
CQ9kMkBGQBGJiYm0FUkttYAjFTA6OsrdKAUFBV45Dq4w0NcTtnpqYH9i+Afm
mRH77sTwxLAPWhtqVGPBgZ1UeNOHi/ltffUJlgDJUevUnO6ero51y14kuyb7
4EqjbCpgc8A7GntRdjrZP4nym02jAGOcHQwAAABc+0AFeBFRAYnTbN26NScn
RzMzD0e8Bw4c0HvQqACz2cyzjPb29spwIHX4DXnmAnqMVQALCkfIABs9GhVA
Ybx0OhD0t4FbNSdXmsaDgsgP/d3U1OTKQZah+0xcXBznSk86UAF06DiwT0lJ
0Qx28vg4OGV4aCBy7dtT0bj/8osjLuXkDvb3ctg/NNBHb3vPneG3x/K1gjEh
bDXZ8/an2vXDKuCTSG20X3H0ENfH/dYALVABAAAAfB2oAC/iKC9Ag+sqgMjM
zPSzDQo6c+aM3jnrApIb1dXVg4ODFFpLJrKxCigvL+f42WwPq+MEUlEBtbW1
PK9OamqqGlqHh4f72Ubd2PWsutq/f7+fbVAQCQH6gzY0yEfQMDw8TBXYsWMH
HzGqA9vtqgA+4HTo9Ke6x8fBmLGLo1uCVlLIHbl2yYVB7USpRGdH85nWBo3x
cjrwkj/1dE1NZGo2m/ht1fEiTcntm/3VsUMaWAVsXLNIY8/NSCb7zvhQzxoF
VKACAAAA+DpQAV7kaqgAzgWIiYnhp9bqgJb+/n4OyLu6usRYV1dnVwVs3LhR
3REH3hTGk2pQ7X19feqKA3pYBfAKaBSH877UOT8pMicLtVHdamxsjNxqxtXz
mPyoqChOMVDzcx1BTaaDo1aPs6FDQkL4rV4F8AEJDAxUM5FnfxwMMJvGkzau
oXg74sPFg/19+gKm8TH/5S9PTQHaOCPXuKGmnDN/RQ1FB64gS2ZarFqMxALn
GtSdLLVbAckOPqdkEFstli3rp4RJUXa6B40CGqACAAAA+DpQAV7kaqiAyenR
Mpyvqq7ANT4+zhPXyOT2PT093DugqoCGhga2qGm8FN/yQ/vExEQJgHkKHT9l
ViI9mplCZdZTCrbZUlZWxpbq6mqOZin4T0hIIMuuXbs03iSLwXinUmeK9v2U
PGvyz30lSUmXn4prVAAF8+vXryfLyZMnHfl05TiQiiHhQ2UM8qYvO7RYUmOC
OAjv7+t2VGxX/AaexnPg/OVd9HWf5bTfnXFXntXXV5exqxNHcthCEmBrxIc8
v5Cjyf9FBUSuXcL+TabxrJ3xbOxoqTduAnAFqAAAAAC+DlSAF7lKKoAjWzXW
FXjmTH7Uv3nzZj/bDEIaFUBBOIsFrhsFxmw/d+6cFKZtORj202Ufa9CoAIrD
t2/fzvuVmJmCcHYVHBwcExPDM/PQ393d2qiY51D1mzmBvwHca+BnmwqV9isi
QpKUNSpA8ny3zETdnSvHoaqqio1OOyyO2NYOvvx6+wXNS/J5O9ubgv/5P1Qm
YPnLieEfxAav4llDIz5cPNA3Qw2lRAeyt43/XrQ1Yk3AO39hCaAfJiSwCghZ
9RpvGP7BGwG2rgd6FWZphRjwDKgAAAAAvg5UgBfhp+4ff/yxcTEOZe2qAA6Y
NdNgkijgELS8vFxT3mQypaeny9rBFNzyMBtVBUzaFsaKjo5miaGuHdzW1kY6
QvKLN2zYUFxcbDw4nx/1q2sH0444GpfUA4vFQtGyunxwSkqKXgKoTSspKTHY
qUB1O378uATq1CJql5pTfOTIETWAd7R2MKG6dXoc6Bsh3UEFWltbjWt4aN92
zdz+6quxtkJK9nWf5SE6/Fq37EUK8gf7tX0NVqu14MAOv6V/lpJRfm8bz/l/
4kgOLz1QXXaY+xfo9bH/MvLjeuYFMAYqAAAAgK8DFXAdQFF3f3//8LCTiWjG
bejtFGf29PQ43dwDRkZGent7NUnBKi0tLRR1+/v7U0m3PNNJS7LCwLMHGB8H
qw0v7o65ODLcXHeytaHG0eT/jGl8rKOlvu5kqd1cYwMo7B843zM8NOC8KHAH
qAAAAAC+DlQAmBcoOqUwnvsL7HaLAHAtAxUAAADA14EKAPOCZDGHhoY6WggY
gGsWqAAAAAC+DlQAmBe2b98eFxeXkZGhznoEgK8AFQAAAMDXgQoAAAB3gQoA
AADg60AFAACAu0AFAAAA8HWgAgAAwF2gAgAAAPg6UAEAAOAuUAEAAAB8HagA
AABwF6gAAAAAvg5UAAAAuAtUAAAAAF8HKgAAANwFKgAAAICvAxUAAADuAhUA
AADA14EKAAAAd4EKAAAA4OtABQAAgLtABQAAAPB1oAIAAMBdoAIAAAD4OlAB
AADgLlABAAAAfB2oAAAAcBeoAAAAAL4OVAAAALgLVAAAAABfByoAAADcBSoA
AACArwMVAAAA7gIVAAAAwNeBCgAAAHeBCgAAAODrQAUAAIC7QAUAAADwdaAC
rlkyMzMzMjJGR0fdKlZXVxcbG1taWjrLvTc1Ne3Zs6eiomKWfq4S3mrm7Jmw
Wrs6WmorSwb6embv7eLocFtT7amKoz2dHeTZuHBTXWV6UkTF0UOz3y9wF6gA
AAAAvg5UgBepr6/3m4m/v39CQkJubu7w8LC73kJCQsjDuXPn3CqWmJhIb8no
SQMUKMAmPzt27Jiln6uEt5o5GyhKz05PCnr3lbVL/sSvjf9e1NpwSi1zvqdL
PtW8qssOqyWtVmtuRnLAO3+RAuS53DDCLyk4QMXStgRfleYBQ6ACAAAA+DpQ
AV5EVECADZIAIgc2b97srhDwTAVUVlZGRkbm5+d72IZprnEV4K1meszExMTu
xPCpcP3tF7YErUyOWrd+5d/orf+yl5rqKqVYe1Mdh/Trlr6oeZ04clB1uGfb
Ji7pv/zlrRFrwj94g98WHNjpqA5QAfMIVAAAAABfByrAi7AK2LRpk1hGRkYq
KiqCg4PJnpKS4pY3z1SAt7jGVcC809neTBG439I/15woZsvIhcHN/svJmBoT
JMVqK46RJT0pwthb46ny6Zh/x8XREbJYLObMtFiyBK746+jwkN2toALmEagA
AAAAvg5UgBfRqwCmurqa7EFBQRaLhd5SxN7Q0EACQS3T399Pxq6uLrFIeD82
Nnbq1KkjR440NTWZzWaNc40KOH/+PPnp7e3VFBscHDx58mRJSUlbW9v4+LjT
tthVAc3NzXrn5Lm8vPzEiRPUBI2TBhv6ThC289EwgDzX1tZSw2tqaqhd6kea
Zra3tzfYo6OjQ+OTdtrS0lJcXExt0R9M1zl8cA9F4Mkf+6vGquOFHLdbp5t2
vPAzsuTs3WbsjfxQsYQNqycmJq5U1WzeEReybdNHDTXldrdSVUBnexPtq6wo
u7/Xy3oQ2AUqAAAAgK8DFeBFHKkAirp5XNCZM2fo7d69e+nvoqIitczRo0fJ
uHv3brFweE9x+4YNG2RkEUkJirfVDTUqgNzS24yMDClw4cKFmJgYNVshODi4
sbHRuC16FXDw4EEe7ETRtSPP0dHRQ0NXHlzzp3l5eapnUjpcmIJ8R3unYDg/
P1+TZJGTkyPCQdNMThPQExgYqLql4J8OoPopSQy1AOmCrKws+oLUVtjlNEX8
WbuaT1epxqa6Sh7SY51O7M3PTCPL0UOfGnvj8T9tTbXGxTSwCkiJDrw8Nmn6
FRuy6uKo23kowC2gAgAAAPg6UAFexJEKGB0d5bCTn10bqIBdu3aJhcN7jvzJ
fuDAgcjISHq7bt261tZWTTFHKmBsbIxDcYr809PT9+/fv3HjRnarf06uolEB
ubm5HDY3NzezhaRNbGwsGUmk7LPBaoWM0tfAjYqKilI9Hzp0iIzbthk9Hq+s
rORKZmZmkg7as2cPvyW73WaSMsqbCSdlUGXEJ/fIEElJSaRotm7dym/JLmVq
amrY6FnGwf7UGArC40L+pbGUFhzI2pUQ5bc0bPX/7YwPLSvKtijdEONjFzm/
YHTkQt7+1C3rVwau+Gts8KqcvZ/0njtjsDtWAfyKDnjns10JKdEB/ste4k4K
p1MMgdkAFQAAAMDXgQrwIo5UQGFhIUfL/NYtFRAQEMA9CJO2J9VxcXF+tlxj
TTFHKoBDbtIR3d3dbLFarRy9q/0OelQVwE7Wr1/f1tYmBfhZPTVqYGCALf39
/aGhoWQsLr48VH54eJg0i9/MtAXWMhLP2yUtLY3KfPbZZ2I5fPgwtV0867s8
VCoqKlj4yCAlk8lER5KMJGekWHZ2NrdLxuH09PSwfKitde+x/OR0RwC96qvL
rjRky/qp9IG3X9BMEJS2JVhGDZ1tayRL2Oo3YoLe1RQLWfVa99k2Bzu8ogJ2
xF5JDeBMBHqdKi92twnAdaACAAAA+DpQAV5E5gjqtHH27NnTp0/v27ePjVlZ
WVzMLRWgRq2TtpwC9ibP241VwLZt2+itZtzL+fPny8rKZGCPXUQF5OXlcUQt
YoRJTk4m+/Hjx1UjxeoafZGamuqnDAri4UCBgYHGuQl0HKhYfHy8o1FDBiqA
jjwH/GoD29vbWbOoA+9JEFFNpI+GIeXidDiQnnNn23jK0F0JYao9PvQ9nvOT
IvbB/r7uzva8/akcpWenJ3GZ6rLDEvZTPH+mpX7kwmBtZcmG9/+XLKHv/d1k
sn+sWAWsW/ri2MUZi0qQE7LnZiS72wrgOlABAAAAfB2oAC+iXy9AoMBYxoq7
pQI0D6XJCYe4Mp7HQAVQxMvTE7W0tLjbFlYBgjpshmE7+U9WYGNkZKQU4zE2
MiiIuxX27NljvHdST7LrxMRE2ooklVrAkQoYHR2NiIigjwoKClR7SUkJe0ue
CRurqqomZ8FAX0/Y6qmB/YnhH5hnRuy7E8MTwz5obahRjQUHdlLhTR8u5rf1
1SdYAiRHrbMqw3h6ujrWLXuR7JrsgyuNsqmAzQHvaOxF2elk/yTKbzaNAsZA
BQAAAPB1oAK8iKiAxGm2bt2ak5PT0NCgRnduqYD29nbNXjjKPXXqlFrMrgqQ
rOSeHreXtdWoAArjx8bG5FP625He8ZuZk2s2m1mJcA3JD/3d1NTktAJ0MGXo
PhMXF3fhwgV9MwVSPRzYp6SkqM/8J6dTmx0hA408YHhoIHLt21PRuP/yiyMu
5eQO9vdy2D800Edve8+d4bfH8jM1JRPCVpM9b3+qXT+sAj6J1Eb7FUcPcX3c
bw1wFagAAAAAvg5UgBdxlBeggVWAZqhPQUGBXRWgGT9vMpk4cJVx/sYjgqgy
fh6NchcVQNvyvDqpqalqaB0eHu5nG3Vjtofqav/+/X62QUE8nIk21IToBgwP
D1MFduzYwfkFVAe7zWS4o4GarD+ly8vLWUfYra3V00TasYujW4JWUsgduXbJ
hUHtRKlEZ0fzmVbtyKvL6cBL/tTTNdWhYzab+G3V8SJNye2b/dWxQxpYBWxc
s0hjz81IJvvO+FDPGgVcASoAAACArwMV4EVcVAGclJqQkKAaefy8XgXs3Dlj
6di6ujp+2C6Bq7EK4AH2pDtUJ42Njenp6YWFhQaVZBXAK51RHM6KQJ3zkyJz
slDgrW41NjZG8kQzrp7H5EdFRXGKgUb+2KW/v39gYEANzrmvhBprt5nqkbG7
gBoLEJIzo6MzhtD39fVRhT1TAWbTeNLGNRRvR3y4eLC/T1/AND7mv/zlqSlA
G2eosIaacs78FTUUHbiCLJlpsWoxEguca1B3stRuBSQ7+JySQWy1WLasnxIm
RdnpHjQKuAhUAAAAAF8HKsCLuKgCTp486Web8LOpqYnjQLbYVQE8XkWWG2Oj
ugyxsQqQKTcpqudYt6enhzfRBPAaNDOF8mN2goJttpSVlbGlurqaW0HBP0kb
TSsYnheIcTo8ierJNZR8avKfmZnpZ5vk024zKZhfv349WehIOvLJnReJiYki
BHgqIbVKpGLo2FIZ/bJrWocWS2pMEAfh/X3djortit/A03gOnL+8i77us5z2
uzPuyrP6+uoydnXiSA5bSAJsjfiQ5xdyNPm/qIDItUvYv8k0nrUzno0dLfXG
TQCzASoAAACArwMV4EVcVAEULctCYBSa8jh/zvnVqwAuSSFuWFiYbCLD4ydd
WDXswIEDvGFwcDDviyBvqhM9GhVAcfj27du5JhIz017Ec0xMDDeB/pbRSgLP
leo3cwJ/A7jXgOtJ+xURIUnKmmZKnu+Wmai7o0PESsHPNtUqiwLi00+vLOlV
VVXFRqcdFkdsawdffr39guYl+byd7U3B//wfKhOw/OXE8A9ig1fxrKERHy4e
6JuhhlKiA9nbxn8v2hqxJuCdv7AE0A8TElgFhKx6jTcM/+CNAFvXA70Ks7RC
DHgXqAAAAAC+DlSAF2loaKAA8uOPP3ZasrOzU111Nz09nfMC1KE7HKY2NTXx
qB4e0JKWltbV1aW6YpkgKuDIkSOayNZqtebn51NILE5SU1ONJcDk9KN+de1g
Ok84GpfVCiwWC0XLakNSUlL0EoAYGBjgAiUlJU4PzqRNdBw/flwC9XXr1kVH
R6s5xZpmOlo7mFDdtrW10QHkbGVWWMXFxWqSwuDgIOkOKqCuy2aXQ/u2a+b2
V1+NtRVSsq/7LA/R4de6ZS9SkD/Yr+1roK+p4MAOv6V/lpJRfm8bz/l/4kgO
Lz1QXXaY+xfo9bH/MvLjeuYF8AyoAAAAAL4OVMA8MjY2dv78eeOZ8xkqQyUt
0+tMecbIyAhFuVcjPiTPvb29mqRglZaWFoq6/f39qaRbnunkJFlh4NkDKN7u
6ekZHrY/zMZqw4u7Yy6ODDfXnWxtqHE0+T9jGh/raKmvO1lqN9fYAPpaB873
DA8NzK6awFWgAgAAAPg6UAHgqkLRKYXx3F9w4MCB+a4OAN4BKgAAAICvAxUA
riqSiRAaGupoIWAAfA6oAAAAAL4OVAC4qmzfvj0uLi4jI6O/370hLgBcy0AF
AAAA8HWgAgAAwF2gAgAAAPg6UAEAAOAuUAEAAAB8HagAAABwF6gAAAAAvg5U
AAAAuAtUAAAAAF9nDCoAAADcZGzq0jk239dvAAAAwHPGbMz3HRUAAHwJ24UT
fQEAAAB8mItQAQAA4Cb8/GS+r98AAACA54zTnWwcKgAAANxgbHwcKgAAAIBP
Mz42jr4AAABwi3Eb8339BgAAADyHbmRj4+PzfUcFAABfAioAAACArzNumrqX
zfcdFQAAfAm6bJqgAgAAAPgy4ya6lZnm+44KAAC+BGkAqAAAAAA+Dd3KiPm+
owIAgC8x1RdgMs339RsAAADwHJMJKgAAANyDr5zzff0GAAAAPGd8fMxsMs/3
HRUAAHwJE103zeb5vn4DAAAAnmMyWc0m08TExHzfVAEAwDegC6bJBBUAAADA
t/n888/NZpPVYp3v+yoAAPgGVquVJABdPOf7+g0AAAB4zldffTU+Pk53NHQH
AACAU+hSSRfM8bFxunjO9/UbAAAAmBWff/65xWyGEAAAAGNsEsBi6wj4Yr6v
3AAAAIAXsFqtFvPUf/QHtAAAAGigC+PUQCALSQALvZ3vazYAAADgNSZtc99Z
bGJg6lGXZepPG5ff2z7g/6eehdk+mebyVhb++7LJzJvihRdeeM3r6/KV6fL1
TK5R/Iat5umilsvXriubyBb0p8k0jnQAAAAA1x9fffXVF59/MWG1TskBuSVy
iH/5Bjod/VuuIBJg+n7Kd10LAABcO5gvywHL9BMK9bPpf80iFaYvY5cvepaJ
CfPnX3yBXAAAAAAAAAAAAAAAAAAAAIDrnv8PEZvMqA==
"], {{0, 158.}, {
      513., 0}}, {0, 255},
Global`SmoothingQuality -> "High",
ColorFunction->RGBColor,
ImageResolution->{144., 144.}],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSize->Automatic,
ImageSizeRaw->{513., 158.},
PlotRange->{{0, 513.}, {0, 158.}}]\)
In[19]:=
myAddress = BlockchainKeyEncode[myKeys["PublicKey"], "Address"]
Out[19]=

Export an image and JSON file to use them in the NFT:

In[20]:=
certificateThumbnail = \!\(\*
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJztnQu0FdWdp287Sa/J9GTaPMaoY2xjnNgaWztZyepk5bFiJ/bEZNLJtEk6
EkYg8jBqjPgEEQ2+oKNBEEGMz/hGlCggvnMVxPjAtxhUfKCgKAqiIojgf+o3
dc/igOfeU1Wnqv51zv6+tb4Y5Z6qvfcp9u9W1X585he//rehW3V1dR35n6P/
+bdBx+59xBGDRu63dfQvPznsyF8OO2zI4H0PO2rIsCFHfOUX/yn6j3P/KvZD
XdXB+nV9JPLbkcdEnh95V+SSyFWRGyMNERHbSvXd6sPVl6tPv8DiPl59/X/x
zh1vojb4VOR+kWdGLqjA94WIiOX6QOSEyB9HbuudS2UQ1fM7kRMjn6pA+yMi
YrV8OvKsyO9451WeRPXZPvKUyNcq0MaIiNgeKjNOjfwf3jmWlajsu1p87+fd
loiI2N5OitzNO9eSEpX1k5EnVKDdEBGxs1S2fNI75/oiKt+/R66oQFshImJn
quel/+6dd42w+N2md/sgImIYnuWdezWisuwduagCbYKIiGGp7NnbOQNHVaAd
EBExbEc5ZeCcCtQdERFRzikx/z4WeVsF6oyIiFivsunjBWfg31q8Rlz+5T8g
cmTkxMg/fMJs5k5m3X9vNn8Ps/v/0WzBFxERsZ1U360+XH25+nT17RN7+voB
hWXhfGVVQRn4ochbci3v0Mjxkdf9ndm9e/l/Z4iIWI7q89X3j+/JgnyzsFuZ
VUAO5vc+8OjI6dtzn4eIiHEWTP+02bG5ZmGu7wstr3GhI3ru/bzbHBERq+n1
n4mzIp8szGUcqcXzA1t//nnVdv7ti4iI7aEyI5/npS3PL7RW58j/pit+T+rd
poiI2F4qO37Tcg4uajEDs6+V1j/y/P/q346IiNjeXvC3caZkz8JMa7BZvGZ2
tnMOjJzxaf+2Q0TEzlCZMrClLEy1Nnf0838TuTzTuQZHztnFv80QEbGzVLYM
zpyD2qfiv6fIwWMznUfzImfv7N9WiIjYmSpjBmXOwhMTZuCemd8HMicCERGL
VlmT/X3hXglycGqmY1/wN/5tg4iIYaixM9ly8NwmGbhdpuNqXKt3myAiYliO
yXxP+Ok+cvDk1Mcb0sX8QERELF9lT7a59mP7yMHXUh/vsk/6twUiIobptG2z
5ODKXjLwO6mPdSzPQxER0dmRme4J92mQg1NSH2cWcyQQEdFZZVH6HJzSIAef
T3WMkdwLIiJiRUx/T7hkiwz8dOosvXp7/3ojIiLKa3bIck+4Y10O7p/qsxqf
cx976CIiYkXUXr7DUudgv7ocnJzqs+N5JoqIiBXzzOzvCKP//2iqz87cyb++
iIiI9Sqb0uXgYz0Z+LepPjeIZ6KIiFhB9Ww0/RrcW0f+S6rPjOKZKCIiVtRR
qXPwu5EjUn3mLHIQEREr6qS/SpuDx0demOozl3zCv56IiIiNvPxTaXPwysj5
6cbIfNa/noiIiI2cnXptmXsjn031mdt3868nIiJiI7s/nzYHX4xckeoz8/7B
v56IiIiNvHvPtDm4OnJtqs/cs5d/PREREXszXQ6m17t+iIiIfUkOIiJiyJKD
iIgYsuQgIiKGLDmIiIghSw4iImLIkoOIiBiy5CAiIoYsOYiIiCFLDiIiYsiS
g4iIGLLkICIihiw5iIiIIUsOIiJiyJKDiIgYsuQgIiKGLDmIiIghSw4iImLI
koOIiBiy5CAiIoYsOYiIiCFLDiIiYsiSg4iIGLLkICIihiw5iIiIIUsOIiJi
yJKDiIgYsuQgIiKGLDmIiIghSw4iImLIkoOIiBiy5CAiIoYsOYiIiCFLDiIi
YsiSg4iIGLLkICIihmzROQgAAFBVyEEAAAgZchAAAEKGHAQAgJAhBwEAIGTI
QQAACBlyEAAAQoYcBACAkCEHAQAgZMhBAAAIGXIQAABChhwEAICQIQcBACBk
yEEAAAgZchAAAEKGHAQAgJAhBwEAIGTIQQAACBlyEAAAQoYcBACAkCEHAQAg
ZMhBAAAIGXIQAABChhwEAICQIQcBACBkyEEAAAgZchAAAEKGHAQAgJAhBwEA
IGTIQQAACBlyEAAAQoYcBACAkCEHAQAgZMhBAAAIGXIQAABChhwEAICQIQcB
ACBkyEEAAAgZchAAAEKGHAQAgJAhBwEA8mXNG2ZPzPMuBSSFHAQAyJdpY8yG
72T23rveJYEkkIMAAPnx+jKzAVG/t3/kzed4lwaSQA4CAOTH+YfEGSiHbWW2
9k3vEkEzyEEAgHxY+hezn3dtykF5zSnepYJmkIMAAPkw/qebZ6AcGLlquXfJ
oC/IQQCA1nny7g9mYM0Lf+1dOugLchAAoDXef99szDd7z0E9K33pKe9SQm+Q
gwAArbFgVu8ZWHNiP+9SQm+QgwAA2dn4ntlRuzXPQfn0vd6lhUaQgwAA2fnT
RckyUJ78He/SQiPIQQCAbKxbY3bI1slzUD44x7vUsCXkIABANq7/bboMlMfs
GT9LhepADgIApOfN18wOTJmBNede6l16qIccBABIz2UjsmWgPHQbs3ff8a4B
1CAHAQDS8cpzZgdkzMCasyd41wJqkIMAUCXWvu1dguZM+UVrGSgHR779undN
GrNmldn6dd6lKA9yEACqxA3RfdKYb5nNn1bN/fueezju11rNQXnFcd612Ry9
85x+cvzec91b3qUpD3IQAKrEfddtyomDtor3tF3xgnepNjH2+/lkoNSz1RUv
etcoXgf8ilFmg3rKNSiwfpscBIAq8fwjH8wL9SPjf2L2yG1m72/0K9tj3fll
YM2pQ/3qo98vLjly077BNY/c1a9MHpCDAFAl1rzRd24M39lszqTy360pf0d9
Of8cVB+55LFy67J8sdl5B5v176VMp+xTbnm8IQcBoGoMTZAfuof5/UFmzz5Y
Tpnuvjr/DKx5+g/LqYP2CT7nwA/uFbylkwaUU56qQA4CQNUY/bV0OaKfv/My
s/VriymPxuscvmNxOSgX3llM2YXG9mi/i6Tjey4fWVxZqgg5aKtWrbKZM2fa
2WefbePHj0dsW3UN61rWNd3WTB6YLUuGRF55fPzcL09umlJsBv7/LP9qvI9h
nmh/izP+T/qyhDa3MfAcXLlypU2ePNm9/0LMU13TurbbluljWssU9Tt61qg1
rTduaK0s76xO9pw2D++ZkU/7PTHP7LR9s5dj3hX5lKNdCDwH9buzd5+FWIS6
ttuWOy7JL1sO38Fs1nizN1dkK0urmZzGI3Yxe299tnLqXvLhW8xO2rv1cmhc
bEgEnoM8C8VOddKkSd5/vbKj+5m8M0Zz9bQOzNP3JC/HypfMBpaUgTVvPTdd
W2kc64JZZqP+Kb8yvPB4ujK0O4HnoHdfhVikbYvmlheZNcd9yaz74uZrplzw
q3IzUB7012Zr32zeRnre++drzEbslX8Zst47tyvkIGLH2raoj291Heskao3P
S481W/bkB8uwbFHz+QVFee1pvbeNnptqbKzmuhdxbs0pzHu8TtUhBxE71ram
qH6+keqnxn7P7P6ZZht69sg982c+GSi1rtnqVzZvD617fdv5ZodtX+y5D/1E
+d+1N+QgYsfa1pz+I58M0t6AWmvMKwNrXjQ8bod1a8xummx2yNblnFdzMUOD
HETsWNuaKmSRp3omO+3EeK3xMs87/qfe33z5kIOIHWtbozVEvbMoRDU2KDTI
QcSOta154Ab/TAjRGWO9v/nyIQcRO9a25oWF/pkQordf6P3Nlw85iNixtjVr
3/bPhBBdMNv7my8fchCxY217NKfcOxdC85kHvL/18iEHETvWtmfMt/xzITS1
R31okIOIHWvbM3Wwfy6EpvZaDI3Ac5B1trFTbet1tmtcc6p/LoTk0Gr314UR
eA6y7xJ2qm2971KNu670z4aQPGYP72/ch8Bz8PXXX2cfXuw4dU3r2m57nrzb
Pxu2VOu8HLWr2aQB8XrY86OsXnSX2UtPmb312qb1SfVP/bv+u/5cP6ef1+f0
ea81vPty7Pc9v20/As9BoX279bszz0ix3dU1rGu5rfeir+f1Zf7ZoGeFWnN7
zllmi+/Lt346no6r45e1531fTh2ab/3aBXIQAKqK9v8Z4JAH2nPhnAPjPQqV
xWWg8+h8Oq/O75GDVx5fTl2rBjkIAFXmmD3LyYAhXfEa07dMjZ9neqLzqxwq
z5ASc1D7WoQIOQgAVeZ3Py627x+2ldmE/cu770uLyqXyDSth3wntbx8i5CAA
VBntF19Uv6/3citf9q5hMlTOovcGXjjXu5Y+kIMAUGX0fDDv/v5X25rdMNG7
ZtlQuVX+InJQY1tDhBwEgCrz0I359fN61zZ5oNmaVd61ag2VX/XI+91hu7dL
VshBAKgyS/+STx9/xn5mry31rk2+qD6qVx7tMyDgvpocBIAqs35t3I+00sfP
ynGt1Y0bzJYvNrv/erOZp5v9/iCz0/Y1O3r3eCzLAT3n1D/17/rv+nP9nH5e
n9PndZy8UP1azcHhO+dXnnaDHASAqvH+xug+8Amz2y6I59O1svbKjWe3Xp51
a8wevsXsqhPMTtrbbGCLmaPP6zg6no6r47eK6tlKmbS3R6iQgwDgjfY4ePoe
sxsmxPMk8nrvdfM52cukLH7+kXgttFFfzqc8vanj6zw6n86bFdU38/3gTvHv
HS88nu+9ajtADgJA2byz2uyRW82mn2x2yj7FrBmjcaZZ0LqgWg/0/EPL3wdY
59N5df7aOqVpyWN87YGR435gNmOs2aO3x99XJ0MOAkDRrHzJ7J4ZZpcebXbc
l1p/31dUBi551Oyi4VEelTBnvc883Couh8qThbznmuj7GrFXlNGHmN15mdmy
J+M17zoFchAA8kT9o/rJ7ovNzh0WP28rM0OyPAtd+2b8TFb7QHjm35aqPCqX
ypeWVp6RJlHrgusZ9swz4vvXPN5xekEOAkAr6Pnd4gXxOA2td1LG+l+9mXZM
jDJbZde6Zd6Z15cqn8qZ9h6s1bEzadRYptFfjdf/uftqs1efT1dWT8hBAEjD
2rfNHuuO3x2d+t3Wx07mpe6b0rB+XbzPr57Tepc9iSqnyqtyp0Ht4lXmgz9q
NrFfnMdP3xuPh6oi5CAA9MXqV8zuu87sshHx7/tV3D9W+zKkYd1b8Vw+9dPe
ZU+bKyq3yp8GtY932aXmVGq+iPZ3WjA7fm9cBchBAOgNPYebOti//+xLvadK
05/qflb9sMe+hnmocqv8qkdS1D5V2Oe3kYdtbzblF2a3nmv28tPpr9E8IAcB
oC/eW2829nv+/WVvplkvW9lx+ci4X/Iudyuq/KpHmixUO3mXuy/1XvnFhemv
zzwgBwGgGdoX9sjP+feVW6pxOUnReMZpJ7Z/BtZnoeqTZpxm0fs2ZVXvmJ95
IO1VmR/kIAAkYfkz/vPq6tX9Q9K9AzW2RONFBlWg3Hmq+qheScfOqL08x/M2
Uu8MH5yT/brMA3IQAJKieWIH9NGnlanmEiRh43tmd083O3wH/zIXoeql+m1M
uP5MleaIKB9Udm/IQQBIg/ot72eLWn9M41iT8OyD8RhF7z6/SFU/1TMJarey
14vrzdkp57oUBTkIAGm55hTf/nPiz5OVU/MLzvulf39fhqpn0vkUaj/v8l79
m+zXX96QgwCQFs/5FEnvBbXOza3nmfWvQEaVoeqp+iZZn9v7nlDXTpXWJyUH
ASALmk9x4jfK70OT3gtqH3vtqeedT2Wq+qreSfC6J9SY1ax7aRQFOQgAWXmz
5PkUSefMa/0u7enknUseqt5J1i/zmFuv35vefaf16y5vyEEAaIWXnjIbXFI/
mnS+oOaiHb27fyZ5qHonnYtX5nzCkVHWvP169uusSALPwQ0bNlh3d7dNmTLF
xo8fj9j26lrWNa1ruzQWzi1nPsWcSc3LonshjcHwziNPVf8k94RqzzLK86tt
zV5f1vp1VhSB56D6C+9+C7EI582bV+5fJu3PWmRfmvSZ6LJFZsd90T+LPFX9
1Q7NKOPZqNZeSPrO0ovAc5D7QOxUdW2XTpH3YUmeiWou+U2T437HO4s8Vf3V
Dknm1hf5bNR7vbSkkIPu/RViEbrkoMbCn/V/i+lTkzwT1RiMquwx5K3aIcmY
lKKejeo5+cO3tH5NlUHgOchzUexU586d6/OXSn1vEfMptB97M7Tu24EVyKAq
qHZQezRD7Zr3udXvV2G9tKQEnoOMk8FO02WczJZoPoX2lcurX+2foB/RM0Ct
0xX6M9H6LFJ7JHk2mvdaA0nu3atE4DkIAAWhveTymk8xIEE/oj0Xzurvnz9V
Uu2RZC+KPPckrtJ6aUkhBwGgKB6/w+znOfSth+/Y/FwrXjQbvpN/9lRJtYfa
pRlq3zzON3VotdZLSwo5CABFcvuFrfevZ+zX/DyP3BbOWqJJVXuoXZqh9m31
XBp3utHxWXwrkIMAUDRXjW6tj718ZPNz3HxOPveenaTaQ+3SDLVvK+ep6npp
SSEHAaBodJ/Qyjy1W6Y2P4f6csbIbK7aI8nvEGrfrOfQemlr3mj9GvGEHASA
MtD9wuivZetrF8xufnztn0AOfjAHk+zPofbNcvyqr5eWFHIQAMpCfab6zrT9
7eL7mh+70/ecz6rapRlq37TH1XppLz/d+jVRBchBACgTzadIO9d9+eLmxz1q
V//MqaJql2aofdMcs13WS0sKOQgAZfPgnHTPMDUvvxme+6tXWbVLM9S+aY55
7x9bvwaqBDkIAGXT/Yd0/e66t5ofk/XUGntggj5Y7ZvmmO08R6IR5CAAlEmW
vQrJwWrloJx2YsuXQmUgBwGgLLKutcZz0ewW8Vy05vxprV8TVYAcBIAyUF+b
dd0zxslkt4hxMjV1X98J42XIQQAomlb3YmLeRHaLmjdR8+CPtP8cQnIQAIpE
6y5P7NdaX848+myqPYqcR19z1JdZV40cBIDe0D48rfbnrKuWPQeLXletpvZ4
ase9JgQ5CABFkcdeE/sn7MtZZ/uDlrXOds0ZY1u/ZjwgBwGgCDQ/Iq9cYt+l
bJa579L+Pf19O86xJwcBIG/y3Itesg9vNsveh1dqzbXnHmr9GioTchAA8mT1
q9nW0u7LAQn6kfXr4ndU3tlTJdUeapdmDMj5vPr+V77c+rVUFuQgAORFq/Mj
erN/gn5k43tmsycwVqam2kHtoXZpRhHPk3UdrF/b+jVVBuQgAORBq3vtNnPx
guZlWHQX66vVVDuoPZqhdi2qDFMHt8cYUnIQAPJA600W2a/PmdS8DLofHf9T
/wyqgmqHJHP61K5FlmPWmS1fWoVDDgJAq+Q1P6Ivda/ZDD0DvGkyz0ZVf7VD
kmeiRd7D18qifbaqDDkIAK2gcfllzNsbGrnypeblWbbI7Lgv+meRp6q/2qEZ
as+hJZRnUFc8hriqkIMAkJW850c0M8mz0ffezWcNm3ZW9Vc7NKPoZ6L1Hr5D
sn1DPAg8Bzds2GDd3d02ZcoUGz9+PGLbq2tZ17Su7ULR2sp5z49oZpJno0J7
IBy9u38eeah6J90Douhnolt68neifF6f/ZorisBzUP2Fd7+FWITz5s0r7i+O
xl+c8PXy+/ikz0Z1LzT9ZP9M8lD1TnIvWNYz0S09/5DWr7+8CTwHuQ/ETlXX
diEUPT+imUn2TxBL/2I25lv+uVSmqq/qnQS1o1c5byro2swKOejeXyEWYWE5
mNeazFnV/uqrX2lezg3vmd16Xjhrjqqequ+GBGNE1X5qR6+yalxVknVPyyLw
HOS5KHaqc+fOzf8vTBnzI5KY9J5w3Vtm5/3Sv7xlqHqqvknwvBesqfFVy57M
fi3mSeA5yDgZ7DQLGyejOWBV2dco6T2hePbBzt+rXvVTPZPgfS9Y75GfM3t7
ZfZrMi8Cz0EASIDmR1RtvbIJ+ycru+aS3z09HrfvXeYiVL1UvyRz5oXazbvM
9Y79XvKyFwU5CAB94TE/IonDtkq+p4H2XLhhQjyf27vcear6qF5J9pQQai+1
m3e5t/TiI7Jfn3lADgJAb7y/0eykb/v3k72ZdD6hWLcmXgO1XwXKnYeqh+qj
eiXFc5xvM/Xu2QtyEAD6QvMkljxqduu5ZpMHmh26jX+fWe8NE5PXZe3b8XjX
ds9ClV/1UH2SonbyLndfag9Er7XXyEEASMurS8zuvtrsosPNRnzBN1eSzq2v
oey48vj8954tMy9U/jQZ6DVnvi81XvT0H5n98T/MHr8jXX3yhhwEgFbRmL+H
bzGbNsbslH3MDii5T9UeQ2nQ/IKZp5sd/FH/PEijyqtyJ50fUaMKe1EdtavZ
7w8y677YbOkT8TP3qkAOAkDeaF2vp++Nx3DonVQZ9yI6Vxo0tuSuK82O+5J/
RiRR5VR5k46JqaF2KbusumfV70P6vUjzbaq6vnYNchAAikZ7kmsfIN0LnBvd
EwzfuZj+98az05dL+7FXbS7Blqp8Kmfavd3VHmWUT++MJw0wu/mceI3vJGva
VAlyEAA8WLXc7L7r4vEeo7+a3xx99cVpWftmfN+kZ3femVevyqNyqXxpUTsU
USZ9T/q+Lj3W7J5rzV5bmr5sVYMcBIAqoHESGi8xY5zZuB+0NtfvlqnZyqBx
sRcNNzvIeY6dzq9yqDxZUP3zKoueaf/ux2YzzzBbdFe6eRrtAjkIAFVEa4w8
93D2NdGyZqGe6am/P//Q8tcf0/l0Xp0/67PFVjJQ/fUxe8R7I915Wbz+Z9pn
se0IOQgAVea3/5q9X8/yjLSGxjM+/4jZtaeZjfpysfmn4+s8Ol8r4yhbeRb6
wA3VWOvTA3IQAKrM8V9pLWPSjp1phJ4Fal7IVSfE96cDW8w9fV7H0fF03Dye
NbY6Jkbr54UKOQgAVSaPOX6zxudXHq2vs3yx2f3Xx3P5NCfutH3Njt49Xruz
NndS/9S/67/rz/Vz+nl9Tp/fmON+IKpfq22k8aihQg4CQFXRu6m8xpGesV9n
jG2sR/VRvfJon/tnetfGD3IQAKqK5l/n0cfXHNIVr5G6ZpV3zVpD5Vc9huTY
NlnHFXUC5CAAVBXNvc8zB2tqH6k063NXCZW7iH2wtHdFqJCDAFBVFs4tJgdr
as23pHsYeqNyFrlv0tTB3jX0gxwEgKqi9UqKzEGpsSxat6yq4yVVLpWv6P1z
NZYnVMhBAKgqRa0N1ki9a9O+DHpP9pbzutA6v8qh8uT5DrAvj9zVt86ekIMA
UFWmjykvB+s99BNm5xwYrwte1n2izqPz6bw6f9l1HhhwX00OAkBV0fpeHjlY
r9bX1Hu5OWeZLb4v3/rpeDpuWXtTNXPNG/nWr10gBwGgqmh9Z+9s2FLNZ9Q+
ENpnSGuhzb8yXg/0pafi55m1dUH1T/27/rv+XD+nn9fn9Pm85kXm6dK/eH7b
fpCDAFBVRn/NPxtC8rFu72/cB3IQAKpKEfPksHfnXe79jftADgJAVTmgSb+N
+ar1T0Mk8BzcsGGDdXd325QpU2z8+PHYgeq71Xes7xraCI3Z8M6F0NTevyES
eA6qf/Tup7Ec582b5325QRpeXuyfC6GpcashEngOch8YjvquoY1YNN8/F0Jz
9Fe9v3UfyEH3/hnJQWiA9unzzoXQPPgj3t+6D4HnIM9Fw3Hu3Lnelxuk4dbz
/HMhNNVf1+Y/hkTgOcg4mc6XcTJtyoyx/rng7SCHc3baXsVJCDwHAaCiXPjr
8jNg+M7xOmdH7+6fgQd/NN5vV3tujPpyeefNe+24doAcBIAqor2Gyuj3tb6Z
9nV49Haz9zfG537oZv8cvHv6prZ4/32zR24zO2Wf4s97/0yf79sTchAAqsiJ
3yi2v9eYkOknm614sfH5x/3ALwNP/W6cfY14+p4ot38S961FnFt7XYUGOQgA
VeSIXYrp53VPdc8Ms/fWf/Cc69dt+v8vLvRZC7t/V7L1rl9YGO/RlHcZrzoh
v++wXSAHAaCKDMyxbz8w8pIje8+XxQvi/diP2XPTs1Hh8Y7yqtGbzv/26/G9
oZ6RbuxlHOerz5tdfITZgJzOP3Vwft9hu0AOAkDVWPdWPn36cV8y+9NF8fG2
ZOOGqP+bZTbiC5t/Rj9fY/WrcYaWlYGHbrN5WZVvtT87fEezW881e/edxm2m
sl79m9bLq9wNDXIQAKrG8mey9+Nam1v3NHqP1gg9+9Q7sN72fB/StXkWzRpf
Xg7ed92m8y55rPEzz2Fbmf1xXHyv2Ih3VkdlPtPsoL/OVoYjd83ve2wXyEEA
qBoau5+2/x6+k9kNE8zefK3xMZUb005Mdr90yVGbPqfcPHyH4jNw3L9uXl49
p+3r5zW38LIRvY/zWb/W7Lbz4/vINOUYEGCfTQ4CQNVYMDtZn63+RWMnH7l1
8/d69bzynNm5w+LxJ0mzQPdhry7ZdAyNqykyA3UP+/LTm86n+8I0ZZ06NB43
0wi9V5w/7YPPf/tS8xZDghwEgKrxp4v77qf1zG/6mOhe6IXej/HUn81O/2Hc
B2XJJt2P1dAchjHfKi4HNX+jht7/HbZ9+mOonmfsF69P3gjV4aEbk9Vj6RP5
fI/tAjkIAFVD778a9c8nfdvsz9eYvfdu48/pnlDrcx//lXzy6fHuTcfWs9qs
mdqXeuZaP/bl2tNaP6bmXuqeurd7ZGXl6T/q/fOPdTf+XKdCDgJA1dAch1qf
rPdg2h/2hcd7//na2Je83+PpnWP9fIUpg/LPwQdu2HR8re2Z1/wHedRuZnMv
7f33hiWPmk0e+MF8v/OyfL7HdoEcBICqcVZ/sxF7md12gdnaN3v/ubdei58p
Ds05m+q9qW6/Lo1JyTOnfvfjzeszaUAxddDY2Bsm9t6WyxfHcyUP6Pn563/b
8lfYVpCDAFA1NLal2Z9f8KtN/XaR6n50zRubzq3czeO4ylPNga/xxLzi6zI4
ctoYs9WvNG7XlS+bXXl8eGvKkIMA0E5oPl8R7+n68rxfbjq/7qm0F0Srx9Q7
0Bp69ppmPGer6vcHjZnpjd7eK3Yq5CAAtAt6f+ax5qf6sZee2lSO7j+0djyt
nVq/lqnWiSm7Tqf+S/nfX1UhBwGgXdBcibLzouaYb24qh9ZkG/nF7MfSfMca
mt9f5PvNvrJ92aLyv8MqQg4CQDugMY9aU8wrB6XmItR4/I5sx9C+ivXUryFa
tpceW+53WFXIQQBoB+Zf6ZuBUutg1+/XpLVs0nxee2jo2W6N3tYQLcst11IN
FXIQANoBPZf0zkGp+Qc19M4wTY5p/esaWt+ljP3lm3nHJeV/l1WDHASAqvPc
w/55UVNz/Ou59Ohknzt6983ns6dZQ7RItfZO6JCDAFB1NG/BOy9qPn3v5mXT
OJchCT6n94n1XD7Svy41n3mgvO+yipCDAFBltGZMnmu4tKLWKWvETZP7/pzW
LtuSpX/xr0/N3x9U7HdYdchBAKgycyb550TN2RMal1FjZ478XOPPaD2alS81
/lwV3g9K/Z7x9srivsOqQw5Cm7J+/XpbuTLgv7shoHVNtNa1d07In/eRZ6K3
PRNvPLv3z2jvDO961dQ9baiQg9CmLF261J544gnbuDGwNaBC4qGb/fOhpvYy
bIbWaKn/jNZK2/Be7z9fhTmRNY/cNR7DGiLkILQp74f6dzYk+tojr2y1J30z
NK61X8/P65+97Ylbz1Wj/etWs36/xZAgBwGgiix/ZlOmeKvxoPXrgfZFbWzr
1MEJ67m4OvWc+PPs31c7Qw4CQBW5YpR/LtTU2mdJ0TtE7ffX295GjRj7ff86
ymbvQDsVchAAqsb6tcnm5JXlsw+mK//ry9L9/P3X+9ex5oxxzcvbaZCDAFA1
tNaXdx7UHLFX8fXVvIs89jTMQ93LbuxjbE8nQg4CQNUY9U/+eVCzfj3RIslr
n/s8XDCrnDpXBXIQAKqE1i3zzoGael+2ank59V7xQnXGy4z7QTl1rgrkIABU
iXMO9M+Bmr/7cbl1P2M//zrv39Nvv7y43Lp7Qg4CQFXQGMsDKpADNTV+pUwe
nONf55pXHFdu3T0hBwGgKsw83b//rzm0a/M9d8tA41N+ta1/3Wv117jdECAH
AaAKVCkDpPYV9OCP4/zrXnPeFT5tUDbkIABUAY1R9O7369UaaR5oHnuaPe6L
9ISv+7RB2ZCDAFAFTtvXv9+vOfKLvm0xYX//NvD+faBMyEEA8GbZoriv8O7z
a3rvQfTIbf5tUPP8Q33bogzIQQDwRu/ivPv7mv0j31zh2x5V2ndR+wivecO3
PYqGHAQAT9a9Ffe13v19zTN/5t0iMbPO9G+LmrdM9W6NYiEHAcCT28737+fr
1b7yVWD1q9WZS3nMHp29Ry85CABeqG89Zk//fr7mQVuVP2ewLyYP9G+Tmk/M
826N4iAHAcCLRXf59+/1Xj7Su0U2Z+Fc/zapqUzuVMhBAPDirP7+/Xu9Lzzu
3SKbo/vlo3b1bxepZ7RlrTleNuQgAHigvWqrMl9caq+nKqI5HN5tU1Pr3nUi
5CAAeHDNqf79er23nuvdIo156zWzARVoH3nY9mYbN3i3SP6QgwBQNlXaf13q
md+br3m3Su9MHezfRjW1J0anQQ4CQNncc61/f17vxH7eLdI3T/3Zv41qnv4j
79bIH3IQAMrmpG/79+f1PnSjd4s0Z8QX/Ntp/54+/ZXnvFsjX8hBACiT5x7y
78vrPfgj8Z5PVefW8/zbqua0E71bI1/IQQAoE63RNWmA2ZRBZhcebnbxEVG/
OsZs+slmN0wwm3OWWffFZndcYnbfdWb3zzR7/I54Lp32PljyqNmrz5uteMFs
zarW351dNdq7RZKhNT4HtphfR+0Wt/nvD4q/A6l15Mb9IPaUfcxGfzVW95/D
d449dBuzIV2xKsMwrTfwrneL5Ac5CADtjMbcjP1e9mxY+oR3DZJz/iHZ66k9
jjVXBT4IOQgA7c47q+M9A9Nmg+572olnH8yWgbqHe/4R79JXF3IQADoB3evo
nidNPmiN73bj+K+kq6PWKujEuQ55Qg4CQKfw4kKzwQnzQXMG317pXeL0/Oni
dDl40xTvElcfchAAOgmNp0myX1G7rhut/RoPTJiBGoMEzSEHAaDTuHt63Pf0
lRGP3OZdyuxcNLx5Bp7+w85cA60IyEEA6ERmjOs9Iw7Zur0zQvti9JWBGjOk
sUOQDHIQADoR7VnU29zCTpgHfuI3GtdN6wIwPyId5CAAdCq9zS1c9qR3yVpn
3hWN50c884B3ydoPchAAOpkt5xaO+aZ3ifJh/dp4fZdavdTXMj8iG+QgAHQ6
9XMLNe+gU7h85KYcnD3BuzTtCzkIACGguYV6d9ZJ40eWLYozUONHITvkIACE
wsqXvEuQPzPGxu9BITvkIAAAhAw5CAAAIUMOAgBAyJCDAAAQMuQgAACEDDkI
AAAhQw4CAEDIkIMAABAy5CAAAIQMOQgAACFDDgIAQMiQgwAAEDLkIAAAhAw5
CAAAIUMOAgBAyJCDAAAQMuQgAACEDDkIAAAhQw4CAEDIkIMAABAy5CAAAIQM
OQgAACFDDgIAQMiQgwAAEDLkIAAAhAw5CAAAIUMOAgBAyJCDAAAQMuQgAACE
DDkIAAAhQw4CAEDIkIMAABAy5CAAAIQMOQgAACFDDgIAQMiQgwAAEDLkIAAA
hAw5CAAAIUMOAgBAyJCDAAAQMuQgAACEDDkIAAAhQw4CAEDIkIMAABAy5CAA
AIQMOQgAACFDDgIAQMiQgwAAEDJl5KDOgYiIWFXJQUREDFlyEBERQ5YcRETE
kCUHERExZMlBREQMWXIQERFDlhxERMSQJQcRETFkyUFERAxZchAREUOWHERE
xJAlBxERMWTJQUREDFlyEBERQ5YcRETEkCUHERExZMlBREQMWXIQERFDlhxE
RMSQJQcRETFkyUFERAxZchAREUOWHERExJAlBxERMWTJQUREDFlyEBERQ5Yc
RETEkCUHERExZMlBREQMWXIQERFDlhxERMSQJQcRETFkyUFERAxZchAREUOW
HERExJBNn23rUv38vXv51xEREbE30+fgilQ/P+8f/OuIiIjYyLv3TJuBqyOf
TfWZ23fzryciImIjuz+fNgdfjJyf6jMzP+tfT0RExEbO3iVtDt4XeVGqz1zy
Cf96IiIiNvKK7dLm4LTIEak+c1aXfz0REREbeXbqMTKjI7+b6jOjyEFERKyo
x6fOwe9Fbp3qM4Mi7/9H/7oiIiLWq2walDoHt+6KiP75WLqxMjv51xcREbFe
ZVO6DHysq4fo/09J9dkzeTaKiIgV88zU94JT6nKwX6rPDuPZKCIiVsj7I3+Z
Ogf71eXgjik/a3bNDv71RkRElMqktDkWZV9XHdG/L0n1+WN5NoqIiBVxZOoM
XNK1BanfETJeBhERq2D68TGbvRusy8F9Uh9nJPeEiIjo7HGpM1D+ry1zsCcL
V6Y+1uWf8m8DREQM06u3z5KBbzTKwJ4cPC318YZ2xftceLcFIiKGpbJnWKZ7
wXF95OAOGY5ndhLPRxERsWRPzpSBcsfecrAnCydnOu5FH/NvE0REDENlTrYM
/MD4mAY5+PlMx+4fed3f+bcNIiJ2trN2jjMnWw7u0SwHe7JwVKbja33Tm/6n
fxshImJnevMuZoMzZ+BJSTKwJwf/W+Srmc4zmCxERMQCVLYMyZyBmg+xbdIc
7MnCn2U8V3xfyDNSRETMS2VK+j2V6t0/TQbWZeGkzOc8oIuxM4iI2LoXbx1n
SvYMPDtLBtZl4aIWzh3PqWB+ISIiplXZcVJL+ScXtZKBPTm4d4tliOfaX7GN
f5siImJ7eMV2cXa0mj9RhrWagz1ZmG386JZqPdI5u/i3LyIiVlNlxHG55J8c
lUcG1mXhnJzKZTYq8tod430TvdscERF9VRbM+HScDXnlTJRZeWZgTw5+KLI7
xzLGewdP7IrnRLK/PSJiOKrPV98/sSvLPvLNvCvyo3nnYE8WbhM5P+fyxh4Y
OTry7A+bXbWd2Y2fNbtzd7N7v+D/fSEiYnp1nzd/D7Puv4/7dPXt6uNH9/T5
RWRJv64/R25XRAZukYV/Kqj8iIiIWVU2bVNkBtZl4Ycjb6xAnREREaUy6cNl
ZOAWeXh8BeqOiIhhe3zZ+bdFFv5z5JMVaAdERAxLZc8/e2ZgPZZ130JERMT0
KnO28s6+LYnK1C9yRQXaBxERO9PXIvt5511fROXb2nhviIiI+XtC5Me8cy4p
UVm/HvlYBdoNERHbW2XJ171zLStR2XeK/G3kGxVoS0REbA+VGadHfsY7x/Ik
qs++kedGvliBNkZExGqpbFBG7OudV2Vg8X1i/8ipkQsr0P6IiFiu6vuVAcqC
nbxzyZuoDT4e+b8jT4ycHvlg5EuR71bgu0JExPS+H7kqcknkA5HXWNzHq6//
uHfu1Ph/HhTWbA==
"], {{0, 450.}, {450., 0}}, {0, 255},
ColorFunction->RGBColor,
ImageResolution->{72, 72}],
BoxForm`ImageTag[
      "Byte", ColorSpace -> ColorProfileData[CompressedData["
1:eJx9kT9IHEEUhz9P5USUSHKICSlWMFYKwUiwjJeACAaOVUETC/ffrQe3e8fs
igiWgbRCCpM0uSRFmtRJa2ErCIImENKlS6VoI7K+2Tu4QzwHZuab37zfY96b
YbtiFjNA1COLaW1MK2Vtzg/IYTGMSn7oubNh7PmemrI7RKzpWDK1shNEXY8h
CGNlzuSNpeVXRvYfWQbJcZf7lhNVpwuFOdqO8yN0Qg7Hda72cTeOfteLHOgw
hJ85VRULrwo/3Yirmt8L55w1yxX+Ljym5IHCv7Ru1/m/Zj/ltKicWjCfC+eE
Db+F7RZ21lQgPCk84gah5M8s1dnVvKU5KK87jXfqCvu8cHFe6zIfMsMsLylg
YLNOiTIx47KHokSYcp9v43+Q+gvissVVwhHHCyoEWKkf/QfXexsVn0zUM/Xl
oftvkpw+guw7uNxOkovPSXL5BTr/wG7Y9FdqMHUm+nZTG/kEd97Aj72mZu/A
z7cw9LtqKSuVOmVmikU4+SbftAz3DqD3db1vjXu+HsOC9GpuHz58hFFfcq+0
qbuntW+3xjT6dwW8NX+V
"], "RGB", "XYZ"], Interleaving -> True, MetaInformation -> Association[
        "Exif" -> Association[
          "ImageWidth" -> 256, "ImageLength" -> 256, "BitsPerSample" -> {8, 8, 8}, "Compression" -> "JPEG (old-style)", "PhotometricInterpretation" -> "YCbCr", "Orientation" -> Association[
            "CameraTopOrientation" -> Top, "Mirrored" -> False], "SamplesPerPixel" -> 3, "XResolution" -> 72, "YResolution" -> 72, "ResolutionUnit" -> "Inch", "Software" -> "GIMP 2.10.24", "DateTime" -> DateObject[{2021, 7, 22, 16, 39, 49.}, "Instant", "Gregorian", None], "JPEGInterchangeFormat" -> 316, "JPEGInterchangeFormatLength" -> 8699, "ExifTag" -> 190, "ColorSpace" -> "RGBColor"], "XMP" -> Association[
          "XMPMediaManagementSchema" -> Association[
            "DocumentID" -> "gimp:docid:gimp:4057f25f-598e-4de6-bf29-b8ffad04f0e2", "InstanceID" -> "xmp.iid:07eb4e97-fe57-40d2-b506-5101718e363b", "OriginalDocumentID" -> "xmp.did:2e85196f-2700-4f9e-90c7-cf3a07557a2c", "History[1]" -> Association[
              "Event" -> Association[
                "Action" -> "saved", "Changed" -> "/", "InstanceID" -> "xmp.iid:3a750f2b-2356-450b-8e90-71207fff4894", "SoftwareAgent" -> "Gimp 2.10 (Linux)", "When" -> DateObject[{2021, 7, 22, 16, 39, 50.}, "Instant", "Gregorian", -5.]]]], "DublinCoreSchema" -> Association["Format" -> "image/png"],
            "GIMP" -> Association[
            "API" -> 2., "Platform" -> "Linux", "TimeStamp" -> 1626989990937103, "Version" -> "2..10.24"], "XMPBasicSchema" -> Association[
            "CreatorTool" -> "GIMP 2.10"]]]],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{450., 450.},
PlotRange->{{0, 450.}, {0, 450.}}]\);
In[21]:=
certificateData = <|"Name" -> "NFT Certificate", "Creator" -> "Dr. Wily", "PublicKey" -> "e00fb4986fb175a65f1c9c45f016f70fac1a38ced93541eca6aa44568d7cf0b4", "Country" -> "Peru"|>;
In[22]:=
Export[FileNameJoin[{$TemporaryDirectory, "CertificateThumbnail.png"}], certificateThumbnail, "PNG"];
In[23]:=
Export[FileNameJoin[{$TemporaryDirectory, "NFTCertificate2.json"}], certificateData, "JSON"];

Mint the NFT:

In[24]:=
myNFTCertificate = ResourceFunction["MintNFT"][<|
    "Name" -> "My NFT Certificate",
    "Thumbnail" -> File[FileNameJoin[{$TemporaryDirectory, "CertificateThumbnail.png"}]],
    "Source" -> File[FileNameJoin[{$TemporaryDirectory, "NFTCertificate.json"}]],
    "Description" -> "Minting my first NFT Certificate"
    |>,
   <|"OwnerAddress" -> myAddress ,
    "PrivateKey" -> myKeys["PrivateKey"]
    |>, "Preview" -> False];

Download the files linked to the NFT:

In[25]:=
certificateTXID = myNFTCertificate["TransactionID"]
Out[25]=
In[26]:=
certificateTXData = BlockchainTransactionData[certificateTXID];
In[27]:=
jsonCID = StringDrop[
  First[Lookup[
    Flatten[Nest[Values, certificateTXData["Metadata"], 3]], "src"]], 7]
Out[27]=
In[28]:=
thumbnailCID = StringDrop[
  First[Lookup[
    Flatten[Nest[Values, certificateTXData["Metadata"], 3]], "image"]], 7]
Out[28]=
In[29]:=
jsonFile = ExternalStorageDownload[jsonCID, ExternalStorageBase -> "IPFS"]
Out[29]=
In[30]:=
Dataset[Import[jsonFile, "RawJSON"]]
Out[30]=
In[31]:=
thumbnailFile = ExternalStorageDownload[thumbnailCID, ExternalStorageBase -> "IPFS"]
Out[31]=
In[32]:=
Import[thumbnailFile]
Out[32]=

Reset the blockchain settings:

In[33]:=
$BlockchainBase = Automatic;

Options (5) 

BlockchainBase (2) 

Mint an NFT on the Cardano testnet by using the BlockchainBase option:

In[34]:=
tempKeys = \!\(\*
TagBox[
FrameBox["\<\"Private and Public Keys Association\"\>"],
"Placeholder"]\);
In[35]:=
tempAddress = BlockchainKeyEncode[tempKeys["PublicKey"], "Address"];
In[36]:=
(* Evaluate this cell to get the example input *) CloudGet["https://www.wolframcloud.com/obj/2bdfdb62-b213-4ae4-9123-b586ab19af65"]
In[37]:=
thumbnailImage = ImageCrop[
   ImageResize[finalImage, {Automatic, 400}, Resampling -> "Nearest"], {400, 400}];
In[38]:=
nftAlphaTest2 = ResourceFunction["MintNFT"][<|
   "Name" -> "Alpha-Test-1",
   "Thumbnail" -> thumbnailImage,
   "Source" -> finalImage,
   "Description" -> "Alpha-Test Minting 3",
   "NFTQuantity" -> 10
   |>,
  <|"OwnerAddress" -> tempAddress ,
   "PrivateKey" -> tempKeys["PrivateKey"]
   |>, "Preview" -> False, BlockchainBase -> {"Cardano", "Testnet"}]
Out[40]=

Get the NFT metadata from the Cardano blockchain:

In[41]:=
nftMetadata = BlockchainTransactionData[nftAlphaTest2["TransactionID"], "Metadata", BlockchainBase -> {"Cardano", "Testnet"}];
In[42]:=
Flatten[Nest[Values, nftMetadata, 3]]
Out[42]=
In[43]:=
Dataset[Flatten[Nest[Values, nftMetadata, 3]]]
Out[43]=

Preview (3) 

Set the default blockchain:

In[44]:=
$BlockchainBase = {"Cardano", "Testnet"}
Out[44]=

Get an image to use for the NFT, and your keys and address:

In[45]:=
image = \!\(\*
GraphicsBox[RasterBox[CompressedData["
1:eJzt2e3NI7kRReEBHIkjcQx2CAb82zE5Q4fgXRj6sYNeTrPF6jqXPA+wgHH9
qkWV+FWav/7z3//4119+/Pjx99/++89v//3+v6/9929/+n/d+rvZ/On7rPr7
KtZnzPqslTruj7fmQzXquKp8e15UjyNl/qSMp6ueb+3/6SiflzZ/qqWP/6Pq
vrTLfLA+Y+n1+fl1tDrbN41Zn7H0+uxyz6TMhw/6vp2er5I+b7593ern71LP
b59/Wv4r7udrnjuL9n3R9v+nrM+Y9bm2ejyUfWaW586Y9Rmj7QMp98yn7/Pt
39O+r1NR1kHKeknbT6jj0h+5n6+Vsp90O2U+PGV9rnWdR9S62Tc9e59Vf1/F
+oyln+OzqPvPXbT5mTKe3ftEipR7e8r+v8t4qtDW76xT9xP6/t/N+oxR7ttp
9aTNE8r3OMv6jJ1WH+o5TpkPH5R7Jm3fpo3nLZR1Q11fqd8zbT6njKfqdVXo
+3n3+9Du29Wsz1h6fd6uK/X33irU75FSJ+szRq0P5fld+0n3/kOZnx+U8dD2
h/T5Rh3/Kf8e+kEbl/v5WpTzl1qfWfT9vJv1ubbLfrJK6rmZfg+pZn3GqPsA
pT5vofdZ3d8v/R6eYtfxd39f9Htm2npPR/9+u9HXSzfrc23X/Ye2n6efm9Wo
56b1Wfv3FLR9YJf9h4K6XqpV/+5K//emqtdVOeWeWY22r7qf32NfNmZ9xij3
Vdo+QP2+VqHNc8o8nGV9xtLrQ6njLvx+x2jnXVe/6vjX5l1c73tL+X5T1suH
9RlLrw+1rk/Rzrv0eU6dh5Q6WZ8x2vyn1Z82nlXj6N7fKPWhSf+c6eN/ijKf
T1vvtP055Xekbul9WTXrc43W96XXsxtlX51lXzlmfcZOuydQ50M12rlMu/dS
fk9y/Gv/njqfq9Hqc1fKeLqlr5dq1ufaLvvb22h9+i6/D+zWN3XfK6zP2r/v
fu5TKeOh5V1o40+vv+PvRVvXKfXpkn7fS58PH9ZnjH7fOy3XPbR1SllHs6zP
GLU+Vc+njGPV61JRvq9ZtPHMcvxrud7voax36vdFu+9Vs28dS68Pta5UtD49
Je9CXUeUOlmfsfT1kvLvWen5KtRzvLovcPxrnu96fydfZdfvq1t6X1bN+lyj
7TMpuWpQzv1Z9pVj1met9Hvaabz3jjn+Z/kqrve1/L7usS8bsz7XqL9bno7W
p++ar5baN9lXjqXXJ/0etUs9KfOfsq6ecvy90s9T2vql7p/Vz7cvG7M+Y/Tz
1HxtLgbaPkPZB2ZZnzHavrHr82n17J7/Vc93/DVOH//u6/euXZ+fdk+2bx1L
rw+1rqei9enmvaj7AKVO1mds13tUl5TxpOyHjv9Zvkr6+GedNp705z+V3pdV
sz7XaH2HuZJV/55fxb5y7LT6vFV3yn2NMo5Vr6NIHX/quH+W/jlcvz3Pp+7/
p/RlH9bnGnU9qhatTzd/lq9G6ZtmndZXzqLWp+r56etx13+/667/2/fAVVI+
b3q+yq7r91codaXNh6fo67cb5T5G28fMn+U6A22fpOxjs6zPmPvYGOW+eCra
fEvpm/R/6fOh2qn7v33rWHp9qHVVDVqfbv5O3oW6j1HqZH3WSq/PW3V/+96y
+nW0+Xla/+T8efe5375Pdf1p0vuyatbnGu3ebv5OLl1JPTftK8fS67PLv69R
+ibaOUKt/9v1PO3zrkKtZ9XzU+q/+nWp9XnK+lyjrl9lo/Xp5sx8NfvKZ++z
6u+r0OYbpS4fu6zfu1LGk1LPWemfN2U8rt+1z0+pz4d96xjlPkO7V5szc2kF
2j5P2YdnWZ8xah9Nqc9T367ft8ex6nVVqut52uddPY5Vr6NIr381+9ax9PpQ
66pMtD7dfI+8C3UfptTptPqk/HsHLV/F+q9F+1zOH2a+ylvnVnpfVs36XKOt
O/M9cqkD5fftWaf1lbOo9aE9P5V1X8vPm/X8XVC+h13usfat16jnuzRC69PN
z8xXs6989j6r/r4KdX6+fS9a/bqq7zd9vVPvdbTxO3/WPPfp697us7rP91n0
enajr3dz8zdzKQHtnKKcI7Osz1q0fZj6/VY9f9f6p4//6fuscvr8SWPfOpZe
H2pdpSu0Pt3c/E7ehXqOUOqUXh9KHT9SxrPrev+gjusuyvhPmz+7jCe9L6tm
fa7R7o3m5ndyaUe79UEpfWU12r5H/f08df4/Rb+X0vJfSd0fZrl+nz0/7Z5J
3x+6UOe/1Il2XpubV+Srpd4bvVePpdwzd/8d4JR7KU36/uD6HaPOf/eHMcp5
SrvXmZtX5JJ45yzlHJx1Wn0odX8qpY/oRuvjKPN/Fm0+UOryVPrvwLT58FR6
fah1lTrQ+nRzc0LehXoOUupErU/V89PH/5b0e+ld1PmfPh+qnp++fmnz/6lT
9odZtHuXuTkhlzSv+l5UxXv1WPo+TB2/99JrKeM5bT64ft9Fnw9dqL+rSDuj
9enm5on5aqf3lU/fZ9XfU6SO+4O6vu6i3kv9XS5D+vg/7FvHKOcR7V5kbp6Y
S6pHuydQzvFZ6fWh9Evfvo4yHz4o49/lHKfU8ynX75q/p87PWen1odZV2hGt
Tzc3PyHvQj3HKXWifb9dz0+ZD9Tx06TXkzb+u3ZZv9VOmQ+zaPcWc/MTckk8
lH+/mJV+r66Wfg+flX5O0c5r69nrtPX7Yd967dTf2aSd0c5rc3Pzerv1lbv2
3dR7OGU+fKT+jkTjfOgZx9vvc0rf+kHfz83NzTm5pHy0ew7lHjKLWh/K82nn
1659x+rXOR/Woqxfan1mpff11LpKmkc7v8zNzb/Pu1DvIZQ6UecDpT5vod2r
73I+1Hh7PqTs5x/pfWsV2rlvbm7+fS7pPN/eW7pQ+wJane6inUennYMp4zkt
T2Pfes3fhSTNop1H5ubm7+erpfaV6X03pY67oN6rnQ89UtZ79/4/i3Je0M5l
c3Pz93NJ+hXaPY1yj5pF27dp9aeNZ9U40s7xU77frvXV/f3OSu/rqXWVxEPr
083Nzfl5F+o9ilKn0+751PlAQ+tT7koZT7f0vrUK7dw0Nzfn55K0GuXfa2ZR
+6yqOqXUvwvtvE4/908dj33rtVN/p5LERTuvzc3N98tXo/SVs6h9d9XzKeNY
9bpT+P2ueT51/5xF2W9p55q5ufl+uSR1o90zKffAWennSNfzzcf5Krt+v92q
9ivqfitJVWjnr7m5uXkX6j2QVqe70vssjfn93pPet1ahnTvm5ubmkpTm23tj
l/S+O70P2qWetPGsHsfbz7dvvfZWPSWJgtanm5ubm3ffG6vuydVo9dz1+bR6
0saT/vzu/WcWZb+inQvm5ubmafu5JFWj/fsO5R47a9c+qMtp40l//lNV6526
X0lSKlqfbm5ubr7r74HUe+zb/36U9j7f9ilvj2PV67qfT50/tL61Cm3fNjc3
N9/1fihJVJQ+aBa17656fvq52fX87vpQ6kqbD7Oo9ZekVLQ+3dzc3JyWrzb7
PpR77C71r0Lp96hOnT+U9U7bV83Nzc1puSTpO3f317f2bco9vFp6fdJ/h0md
Nz97uz7d612SdI3Wp5ubm5un512o93BKn0WtT9XzafM5Zb6dtt7Nzc3NzSVJ
HSh94izaubNrfVLO8V1+x6hC/V1FknSN1qebm5ubn5avNvs+lHs4tY+m1Ocp
yu8w1DpS1gttXzI3Nzc/LZcksX3b16w+F+h9RPXz0/NV0n/noa4XSVIP2nlt
bm5ubj7Ou+zSR9DqSkOpv+vF3Nzc3PzNXJK0l2/7ji7Uc3D2ddX1f3s83fWv
Qv3dRpLUg9anm5ubm5uvzVer6stoaPWnjectlPlGW9fm5ubm5mtzSdLZ7p4P
b507VX0Q7RzcZTxvf1/d802StCdan25ubm5u3pt3oY2f2mdRfgegfV+zaOvO
3Nzc3Lw3lyRpBqUvm5XSJ6b9DlCF+ruEJGlPtD7d3Nzc3DwrX232farGld5f
+X2Zm5ubm5vfzyVJqnT3/HnrXKs+D7/9vFWvW/38Xb4vSZJ+R+vTzc3Nzc33
zrukf9708c+izVtzc3Nz871zSZJI7p5X6efaqeNP/9ySpD3R+nRzc3Nzc/NK
s+9D6dPf6kOrPgdtXpmbm5ubm0uStItv+9auc7Pr+as/r/cLSdIOaH26ubm5
ubn5N3mX9D56Fu17Nzc3Nzc3/yaXJOkkd8/D9D736fO9L0iSTkTr083Nzc3N
zd/MV6P2u0+fa25ubm5ufkIuSZL+3N3zk3qOe/5LkvRrtD7d3Nzc3NycnKeg
1c3c3Nzc3JycS5Kkde6et0/PZc9zSZLWo/Xp5ubm5ubmO+Wr0D6Xubm5ubn5
TrkkSXqP57EkSQT/A3ntk+c=
"], {{0, 0}, {161, 81}}, {0, 1}],
Frame->False,
FrameLabel->{None, None},
FrameTicks->{{None, None}, {None, None}},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImageSize->250,
Method->{"DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> {
        "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> {
          "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> {
            "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultPlotStyle" -> Automatic},
PlotRangePadding->0]\);
In[46]:=
myKeys = \!\(\*
TagBox[
FrameBox["\<\"Private and Public Keys Association\"\>"],
"Placeholder"]\);
In[47]:=
myAddress = BlockchainKeyEncode[myKeys["PublicKey"], "Address"];

To get a preview of the NFT without submitting the transaction to the blockchain, use the "Preview" option:

In[48]:=
ResourceFunction["MintNFT"][<|
   "Name" -> "My First NFT",
   "Thumbnail" -> ImageResize[image, 100],
   "Source" -> image,
   "Description" -> "Minting my first NFT"
   |>,
  <|"OwnerAddress" -> myAddress ,
   "PrivateKey" -> myKeys["PrivateKey"]
   |>, "Preview" -> True] // Dataset
Out[48]=
In[49]:=
%["BlockchainTransaction"]
Out[50]=

Resource History

Related Resources

Author Notes

The current implementation of MintNFT only works with the Cardano blockchain. Future versions will support other blockchains.

License Information