Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Find the minimum-volume enclosing ellipsoid of a set of points
ResourceFunction["MinimumVolumeEllipsoid"][{p1,p2,…}] gives the minimum-volume enclosing ellipsoid of the points p1,p2,…. |
| MaxIterations | 100 | maximum number of iterations to use |
| Tolerance | Automatic | tolerance for accepting an enclosing ellipsoid |
A minimum volume ellipse:
| In[1]:= |
| In[2]:= |
| Out[2]= |
The region is the smallest ellipse that includes the points:
| In[3]:= |
| Out[3]= | ![]() |
A minimum volume ellipsoid:
| In[4]:= |
| In[5]:= |
| Out[5]= |
The region is the smallest ellipsoid that includes the points:
| In[6]:= |
| Out[6]= | ![]() |
Limit or increase the number of steps taken:
| In[7]:= |
| In[8]:= |
| Out[8]= |
Increase or decrease the Tolerance:
| In[9]:= |
| In[10]:= |
| Out[10]= |
Find the minimum-volume enclosing ellipsoid for a 3D graphics object:
| In[11]:= | ![]() |
| In[12]:= |
| In[13]:= | ![]() |
| Out[13]= | ![]() |
Compare the result of MinimumVolumeEllipsoid with the bounding ellipse returned by BoundingRegion[pts,"FastEllipse"]:
| In[14]:= |
| In[15]:= |
| Out[15]= |
| In[16]:= |
| Out[16]= |
| In[17]:= |
| Out[17]= |
Compare the result of MinimumVolumeEllipsoid with the bounding ellipsoid returned by BoundingRegion[pts,"FastEllipsoid"]:
| In[18]:= |
| In[19]:= |
| Out[19]= |
| In[20]:= |
| Out[20]= |
| In[21]:= |
| Out[21]= |
This work is licensed under a Creative Commons Attribution 4.0 International License