Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Find the minimum-volume enclosing ellipsoid of a set of points
ResourceFunction["MinimumVolumeEllipsoid"][{p1,p2,…}] gives the minimum-volume enclosing ellipsoid of the points p1,p2,…. |
MaxIterations | 100 | maximum number of iterations to use |
Tolerance | Automatic | tolerance for accepting an enclosing ellipsoid |
A minimum volume ellipse:
In[1]:= | ![]() |
In[2]:= | ![]() |
Out[2]= | ![]() |
The region is the smallest ellipse that includes the points:
In[3]:= | ![]() |
Out[3]= | ![]() |
A minimum volume ellipsoid:
In[4]:= | ![]() |
In[5]:= | ![]() |
Out[5]= | ![]() |
The region is the smallest ellipsoid that includes the points:
In[6]:= | ![]() |
Out[6]= | ![]() |
Limit or increase the number of steps taken:
In[7]:= | ![]() |
In[8]:= | ![]() |
Out[8]= | ![]() |
Increase or decrease the Tolerance:
In[9]:= | ![]() |
In[10]:= | ![]() |
Out[10]= | ![]() |
Find the minimum-volume enclosing ellipsoid for a 3D graphics object:
In[11]:= | ![]() |
In[12]:= | ![]() |
In[13]:= | ![]() |
Out[13]= | ![]() |
Compare the result of MinimumVolumeEllipsoid with the bounding ellipse returned by BoundingRegion[pts,"FastEllipse"]:
In[14]:= | ![]() |
In[15]:= | ![]() |
Out[15]= | ![]() |
In[16]:= | ![]() |
Out[16]= | ![]() |
In[17]:= | ![]() |
Out[17]= | ![]() |
Compare the result of MinimumVolumeEllipsoid with the bounding ellipsoid returned by BoundingRegion[pts,"FastEllipsoid"]:
In[18]:= | ![]() |
In[19]:= | ![]() |
Out[19]= | ![]() |
In[20]:= | ![]() |
Out[20]= | ![]() |
In[21]:= | ![]() |
Out[21]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License