Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Find the minimum-volume enclosing ellipsoid of a set of points
ResourceFunction["MinimumVolumeEllipsoid"][{p1,p2,…}] gives the minimum-volume enclosing ellipsoid of the points p1,p2,…. |
MaxIterations | 100 | maximum number of iterations to use |
Tolerance | Automatic | tolerance for accepting an enclosing ellipsoid |
A minimum volume ellipse:
In[1]:= |
In[2]:= |
Out[2]= |
The region is the smallest ellipse that includes the points:
In[3]:= |
Out[3]= |
A minimum volume ellipsoid:
In[4]:= |
In[5]:= |
Out[5]= |
The region is the smallest ellipsoid that includes the points:
In[6]:= |
Out[6]= |
Limit or increase the number of steps taken:
In[7]:= |
In[8]:= |
Out[8]= |
Increase or decrease the Tolerance:
In[9]:= |
In[10]:= |
Out[10]= |
Find the minimum-volume enclosing ellipsoid for a 3D graphics object:
In[11]:= |
In[12]:= |
In[13]:= |
Out[13]= |
Compare the result of MinimumVolumeEllipsoid with the bounding ellipse returned by BoundingRegion[pts,"FastEllipse"]:
In[14]:= |
In[15]:= |
Out[15]= |
In[16]:= |
Out[16]= |
In[17]:= |
Out[17]= |
Compare the result of MinimumVolumeEllipsoid with the bounding ellipsoid returned by BoundingRegion[pts,"FastEllipsoid"]:
In[18]:= |
In[19]:= |
Out[19]= |
In[20]:= |
Out[20]= |
In[21]:= |
Out[21]= |
This work is licensed under a Creative Commons Attribution 4.0 International License