Wolfram Research

Function Repository Resource:

MinMaxRounded

Source Notebook

Get the minimum and maximum of a list rounded to a multiple

Contributed by: Sander Huisman

ResourceFunction["MinMaxRounded"][list]

gives the minimum and maximum of list, rounded down and up, respectively.

ResourceFunction["MinMaxRounded"][list,a]

gives the minimum and maximum of list, rounded down and up to a multiple of a.

ResourceFunction["MinMaxRounded"][list,a,{f,g}]

gives {f[Min[list],a],g[Max[list],a]}.

Details and Options

ResourceFunction["MinMaxRounded"] is used to find nice, readable numbers for the range of the values of a list.
ResourceFunction["MinMaxRounded"][list] gives {Floor[Min[list]],Ceiling[Max[list]]}.
ResourceFunction["MinMaxRounded"][list,a] gives {Floor[Min[list],a],Ceiling[Max[list],a]}.
Common values for {f,g} are:
{ Floor , Ceiling } minimum and maximum values are rounded "outward"
{ Ceiling , Floor } minimum and maximum values are rounded "inward"
{ Round , Round } minimum and maximum values are rounded to the closest value

Examples

Basic Examples

Find the rounded-down minimum and rounded-up maximum for a list of values:

In[1]:=
ResourceFunction["MinMaxRounded"][{-3.3, 2.2, 7.2}]
Out[1]=

Find the minimum rounded down to a multiple of 5 and the maximum rounded up to a multiple of 5 for a list of values:

In[2]:=
ResourceFunction[
 "MinMaxRounded"][{13, 113, 75, 43, 55, 65, 101, 172, 33}, 5]
Out[2]=

Scope

By default, the minimum is rounded down and the maximum rounded up:

In[3]:=
ResourceFunction[
 "MinMaxRounded"][{13, 113, 75, 43, 55, 65, 101, 173, 33}, 5]
Out[3]=

Round the minimum up and the maximum down:

In[4]:=
ResourceFunction[
 "MinMaxRounded"][{13, 113, 75, 43, 55, 65, 101, 173, 33}, 5, {Ceiling, Floor}]
Out[4]=

Round the minimum and the maximum to the closest multiple of 5:

In[5]:=
ResourceFunction[
 "MinMaxRounded"][{13, 113, 75, 43, 55, 65, 101, 173, 33}, 5, {Round, Round}]
Out[5]=

If the minimum is positive, return 0 and do not round the maximum:

In[6]:=
ResourceFunction[
 "MinMaxRounded"][{13, 113, 75, 43, 55, 65, 101, 173, 33}, 5, {Min[#1, 0] &, Identity[#1] &}]
Out[6]=

Applications

Find a "nice" plot range that includes all the data:

In[7]:=
data = CompressedData["
1:eJw9Vnc81d//R0YR95Z5uTb3ute6S4N0n2ZGiJKMQklFRqFhFCpEUloiq6VU
ZERpiChSwqclK2UmpSgS+r5///zu43Ef5/E6r/Ec5zzuPeqbQ1y2CgkICAgS
3+F5Av//ueLamfuw+37185jt3DPWxXz3os47y5Lq+GRKgehscQ3f0aCs5ZBS
Iz+zuStn7HEL/+56f/Mq69d8l45LA2djXvF9ajAyW/Web7Tu+Wnq7k7+gftf
gzT/9fJNe5dUt8195r/bnxZlHNrHNw/YtU3i4AC/tkVsx0O/Pr7m7pivnms/
85PPsQQDrd7yvScnt/x794Evpmx9bTjjHd/8++bM/sxP/O9Hyo4tXtPPt1MM
OVgqMczf2fIj0nHLEN+7Q/FB1p4xfrFZ7/zy5J/8b5ofTo3kTPDPI0vvRfI4
f/Syb/hV7198mfUbn1Rzf/ONJMY8nh6b4ufdD9FvOzfFn3izZRSjf/nnex6t
Wc+f5r8birT+Kz7Frzb8ti1H9jd/3orJ8MKTk/xrpzOOOZ2Z4geVK93UffCH
PyHzqNZudJqf5qlloaP8l28XenSnz9UZvlFW2C/1rXN8sTnvq2fzZvitBUnR
WQvm+O0Py+cJHf/H7/FjFIQXC+DaQW/9Fi0B2DL7chVE5/gLvA8xi0UFoBsz
VHp/pQCmD0hIT74VRIJkcAd3WhA6Q6setQ0Jgmts9jVgTAgP/ead68I8PPhT
sT/MWxij9StzhHuE4SaXXNaoIYKtW34ITaXMw9d5WjEmh4Qww942lmskhP5d
Ih7m/YJ49mYyN09fCA4Loiy7W4SwoccmJrJDEPqZXxvcigWhF5Ek8XlEEBnS
G7n8dkGwGvITP18WQuqM+5YDIsJwmeid9VoogjgFfsXyZBFEIvjSgVUi6E5K
qtu8SBQNGz0PJIuJ4n3876rgNyL4fkO04YCkGNxcH04VuYqCZrTdrNBFDCF3
DNwD00Wx+qPIiegfYrBk9k443BaD8pP58UKS8zGrdkqm7pgohLX974o8FYPx
H2MHiafzsa8xssT//AJMufY5NfLEcdQ8svAbSxzpFp4DggPi2JBa+Pi9igQa
73VcNDkngbXZGnz7dRJwfKFjJF8pgS/6TUVCKeLo/Wh6XPquOAoPfa59mC6B
xI0LbcskpJAUVPT5xnIpzDXcUhKJJKGw7dj4x9MkZHC3Sm1eTobihto2c5Cx
5mpVook1Ccs0PtxWMyHhqMfltQ2FJFjMt1eXL5JC5nKz3znNUsgIEnGk9ElB
y8RTo+2OFJwPmLsf0SUj21sioUePDL0+u/jrNmQ4fBNdVLCHjHGxlEn1g2Q8
sT4XtZtNhnbjYsnc4yRI1j98S2WTMO5W0JuoSQbv6woKCsiQ+xteXvOZjJTq
5e/yhsmw33hA2UOGDEkX4YkISzKsXK9HupmSMf/eqVctR0mo0k8wFRcj4dL2
TrGOZSQonN5wjPmI4H1nNmF4nITcHHLMcBoZax9M/rw/TYKMS80lV1US7tdO
bRfeQsbXR4+vxyWSEZKf87rSgIy5J+r2zUZkNI8uvqB7iQwdss62/BAySkQN
A/vUyeiZvaQ3f4wExrIzklP3SNBM1txvzyND9OC6LtdCMux0s4ocasigen43
nz5JhvBk3Nixy2RcSXpq2+1Ixr2j8wsTN5ERENf/3kSJjJrk8RNlKSRsm173
+XSsFMZ5rcbphO/3Azv3L9xAwlYXM/qjeSRcvSCkOmNEwsrW6/XBZiRY7Vrp
voXQ8U6wqU7lCaF72xNKkiQZ7jsy/46pkNHkvilq7UPC13IXNmX7IsQ+TFu/
e5SMaTGbox45ZLRnmBTZ/iN4/eezuf8iGR+FbpwMGSTD+dbEuhyRRUi8+yug
ci0Zx94kkjYRfsdrLNm324eMqI6c+k/FZDBX3/geNUrCiZCtKqkOBF7M5Hct
4vwDVVWKD2suwge3sJiqCjIKDtpl/NdPxguxwSSDFYtgdjpZJKd+ETovjs20
qy+Gzv3cbV/+WwxfRi5rNkcaI9I/qOXLpSFc/6ozbJM05pc+Ne9/thhtKa9+
Oo4tghVz7ZFck8UoOcf9+vXlYtjbTNz08ZVGFjPO7VWlNCzTR17teymNTJVK
4/G90hDha7zwqiLyr9UbJfyl8UiJHm0mJ43z35J2qSVI48vl+iXnH0hDIqTN
i54ujfW0K8fFT0jDmS/0c2mYNLZT4oxvVEtj4f09Csc4Mvjm9Fboea0MhJI1
gkyqZTC65OQUp18GqwMrJNeckMHt9p128u4y0E063+B4XgaeFWZVfxNlce5+
M5dbJYtcyY8rZ9plkFrwJYlTLwOKr9/5sW8yyL28M6ZovQwSepIy525L461n
l5uWigzcWpa3ToxJ48C98oXuTTJoXBNvN7JDFvM2x+tJGcgiScJmqMFKFnWs
KwEZ22QhZB76ees6WVR/8nS2X03gdSe+WbxWFn15yRIK92URGOYsuT9TFsWV
jtfHH8iiPE182YiNHOpbOfsOHZfDse7B2SeS8virn/ziqJQ8fohl/jFVl4fK
8ImXVyPkoSz1ne6hqIDT2ue3T5TL43KeodKKRQoQVfpYYdIjjw+vbAeNBuQh
R4stqWMpQLN1SYRKngK+Z0lPXRlRwGUnl2u94hSE+j2YHdxEwaRfZ6JlKQVG
zuR7rxMo6H1NX2gaS4HkCpOwZ4YUBCy+PG9vIwXnR/cp12VS0GivkO2cRUFp
FvtWAImCqCo7ki2ZAp1d/Z4m1yhorerWmG9HwcF79VHLRCnIW3B49m21AnxM
TXeuKFGAR8Smt8NbKXgY7dvh5ULBqYBfNKMACtL0PLgjThTs323V6bFAEYoS
xdzTIxR4dspUs+oo2JOUa+VvQcGQdlucx0cKVi8okfXnKYJzfcOJlg+KSPSI
D1ZyUAR97lHd/gFFjEqbPT/rowgr54kpgyEKevqmn+sMU8D4YbDyd4oiTuj4
MPe4KYIcm/w7iqhTXdDZAaYSNCpeXi7UVsKh20mZV98owmZB7RPdQEXo/tEa
6e2nQHqz5ZlXURRcSR1p7T1Bwaeld9ooZRS8fO+p+Z8jBUfPvhrftpSC9Xar
L4m7UxA9Mn8kOZ+CXwHTf5tAwYrOmDU7ZSj4aW2Za0vkT84viFx6hIJrTToq
N4wpuNp/elyLQ4HTIdXWMD4FQfTj3Q+TFJDKWdpvuVQB99SyKna+lcfe93fu
ZCQq4Nu/L3p/tAhfe+ru7ApUQFiabgPbSAFVUjuEWs8p4G5P3FDUF3lUbaVJ
GQQpoOPns9sPNRUwsfTW1I3dCrjxI/uytZ8CLvodbnKxUsCL97q9Ah3yUDxo
9ZVaKY9ck5rV2iR5DGnop7+9Lg/B5nUGFURdRe30PzNCR+MT3jhPmNBXIi+p
u56Cw7IdhXf/KqBZeD57rS0Fttre3x4T9+Wtg7nTnq8KSFltGJb7RwHC2091
Smyk4HmQnGs6cf+8YjrkhtiKuPRZIPPfMUUwl957PvhcEbdSV755Za2EorC0
qKzLSpD2TJd7okeFYAD9719/JQTnGBX0GFDxPvmMgl4jFRZ9F1SuvaCC2fZO
cYZFRbCEhs+jy1RQFnzWCDaigsph6ibqKaFGS0F9maESHEpoZo5nCZyyN1O3
shRRX0Q++rRCEedmbgrthiIkxE8cd9qviA02xhEHSxURIWUkdOiBIv70i4gt
iFDCjvS+C6WySijwWDM7LqKE022rDQZjlfC1svn63F4lNO7PDlnSrwRGhnkt
w5SKfJ2Kv2t2U5GXfOJ1ZjsVhw0X8M5+o6L3RYdR9TgVxs3FsXdCqKhOje8s
VKHCgZkv61dIhXumoa9xHhU9FLOw6nVUfFV6+jDKUxmzn0LKhwOVYaDx4Qfr
ExVZJ68udDymDL9obEldooIqN153KFMFWQ8pDQNUFegddrmZ9k0ZIeLvpj+E
KUOCuqD2iokybmfcqtFXUYb3nr7nRrnKEEy8sNQ2XhkzI6f9V/9WRnPhg+23
96vAX1SSp2+pgsHaLs30ShVs6fMSaQ5SQfTdR78Ff6pgUqXJ1Hu9ChREuaXL
rquAfjjIQoSqiiguaQP7nCpE+j65tDaoYlE523iVsyrx2kvesN9XFWGdWoO9
Pqqw4Y28NIpRBWnvq0p5QVWYcowvFDupouIfafmhM6qoLfs+mVJH1Lf9Efkn
qYahdvEk+pQqjlqlLbzdrQq6fZx7/j9V6CkX/Cr4oIrNH/8MKfeooIehrNJN
8HuTHlvBUVDFew/eoOVZFbx/7hxeGqqCnZyr4pegAp+eIa3Mdyo4X/bviaK9
Kjx2V8mE9qhC7JWvarO+GlY1mQoUmqlhz4OpXa+paghM3ZJ01FEN7h0h/sGL
1aDYLOrdOaGKM4qirU4EPkfEYa3dNjXMvb639+UKNUgpWzxsMFTDYEA8OdFG
DSX2Zpaic6qo+p2sFtNK8JcbNfeLVIWfZmGbDYHLkpz16id0Mr6HrFsgp4a0
LvkhL4oaRFKOh4Q9VcV/sktVudJqeOTj2npwpxra5d4Ke9mqoUt8SfShFDWU
aXMzboapwS7txh3D3WoYD3bUmosicNsvuMk9V0Ot1M78vBtq2OXyUXrjLTVY
H1P49SlcDf2/c00thtVQqKbpSdNWh+2KWd0ZEXWUfX5tnaqsDqfpB4754eow
X3gq1iJAHX53N/oWuqpj0jXIRSlSHabrXnK0DdXRqpKT/naNOvYtpQgmxKjj
foFfWRFFHUZyIate09RxxHz8g8wvNTT88ngS76SOr657TxfaqSPzhj+Z5KyO
c546/zSt1CFyUHpo82t1hAr+qrxTp47ex1f0DAfU0eIffHm/jwbmfgl51Ddp
IGX+cp/lFzRw5e7eq8ynGqgNSQz2K9XAkeJ204/FGti01nxj/RsNvEjXiTf6
ooEG0noSe5EmXjJyf3fbEeu3b5qXuZrQvuJ1cPsSTTyifrEpTdREknro2Po8
TcysnH80vV8T5FyRDX++aGJnaxKuDWpi2bZguQvGWsTv5vtY1y1asFcfnN/P
1EJCQ/uhQ3wttGYkqIo5ayFtZsexF5e1sMFIof+nkDYs5z6uPMHUhvNNWm5b
uDaSh395W+UQ8aGfW1oLtXH1zM6BlLPaeFgktE/pqTaajzdcO1SljV0Hza1j
L2iDNbl07lmSNtRuR14d/6mNbPbBLvspbbj1XFfb81kbQ9ntBY90aZAvEkjM
FqFB2JF9XkCNhrQnkXbTo9qQC9IQSLeiYfhGgpE3i4ZNHp88oqVoWGctnXxC
iYaZMvX9LyVpmF+t+9/tOQLXsaQyR4WG2+uKpTx9afA++Zhl0UIDY970yng7
OlyiNIpmeXTI8wd5Y/8Xb6is7jKnY+5l0MRWOh3rH79vPq1Kh0CY7IUEDh2k
jwMzLGU6oo+vtpEn0+GrXhz4QonYt7gRm9pLQ0nDnzb8pAFXKrusVxL9a1T9
j0jSUZDhwjDVpyPwwxpFGy06zlHUvCWk6Pgk9PjOyGI64ko+3pkWo+OMW+nW
zP9oiHfdMfK5koa7CiFv23NpOGV/ZJnYZRr+JFmKX4sk9NH/Vkjfo+GIFOdB
J7FvdZ79+rIlDRsu7rW8HkjDxx4bmqUBDTYydn1wJPzpza88toyG2Jln3FlD
GkpFLl4T207Di3kNHm+iaMgUmmvVWEWDaqB1r5Y/DRFFCz5F36ChYmjjcWY1
0UcO3dRF8D54Vt/yxhQN86QCvooRsf/XJhMrUcK/1VVrY+fREb6i3mGaQsf+
vhn3k+vpuDGv5XdsKh1DAfMzzLzoCLjKimnKpoMfJlqVc5UOh5firqIJdHDa
XaJaXeig/jlw0ukInXjXn6TGeNIhZRFkFhRJxxe9M22r+HSEOTYemr5Jx6HK
uzLvDtFRQyI/2htPB6WC+1o0lMDtDmvIIfZ1yD8V3TKIc6v3Xmx6iw7N7Wm+
V57SwcoWlrN9QvQ9fbPH5zYd2mFVW6+doSNGwGEsMJMOwzc7C4vv0HHMseaH
5Gs68v8bXfxskg41cwfSCj0dBNz7W0mN0sGwpq3ebhMdzA4yFJuNdbDJRZ4k
elYHArNpKn+IvI1ejm9clg6cdnEDeq7pQJOUThr9owOTjP7smy06oI879C7/
ooPyC7VxU3wGPpcc/a2uykDEZPj1vxoMUL2O/KEf1iH+nwfmxgd0MNMo8M3Y
jQGL2AWuAdEMsC3vj71JZ6Bs7S+bpGIGDm/wFdNxZSD8nob8iXAG9PMPH/bW
Z6DzXn7VMDHfqVB+h6k5A2oPhOx3xjPg4OsV+XM1A/0ZIsvvbGLA/1javwFv
BpzVx3LXOjDwI+v0Ds4FBuq6k2NJJQxICcRMVZ5jYMar4XCyPwNvcroHFysx
UO8csatdjgFf169yEUsZkJBsvytBrN/yF+g0X2Hgv1XhJx+3MBBHIr+2rWQg
K991+flHDFzxc8jvv8TACtPK7oSjDOyerV8UlMZA9uAJ1SJC1wG11/Emexg4
6+O6YTaDgeXfmt4dvcrAnS96VqUjDMzRpqvEBhnYKR4o1f2egca3ZeUfe4j6
Wx2XPBYx8Z+HaaiQMRMXNuzIfr6ZiQ8W8h+/+DBx1KNFNzaNiWvWTzcNgImY
fhsNQ08mAngLGCf3MfFGuifdK4SJhTvttkwPMrF3RcntQGIVtmu+nD7JxC4B
s+m8EiZWKMb85BLzUg5c+Wsmx0RJp9dknAoTUqtYvwPNib7Fv09+CWTi5ME1
CYU0JhB8s3GhJBPbllw8lUVmQjcxNbPrJwPFR9QnyE8ZyNxzIOiDEhPpTQqW
842I+Zuay0LZTDyq4k3kEzxHm5y//V7GxCZfseejrkx4bzURUNrPxMwur4Hn
p5mQz6Wee3yLiXMNC925e5no9ZFY+5bg5+UWWHAiiYl67TMvnYn+o/fDTfMZ
RJxnoFb+i4GrZQVTqe8YOEcN+eSiRuh79SyiZhsTVg/sFr1JYWL35bW9Z4uI
uaHP/s6GMRFfdn39OYJP1M5yuYVbCV2fw2tGCd/GtYovOW9k4s/FdOt4wl9m
5I5NyWZMFPt/frjGlgmhyPBaL4IPu86Gkk+cS8mLCxkua5hIWk6Os5MmcB+P
Or0j8kml75yZzkwotpk/+2HPhP0L3apW4jw8ZieS9QKY+LHnbL4KMf/Hz4hb
iwn9N5X51X33CJ0fovuy65io3FAu67laFxHXF+aVcHVBdTm50VhDF+Jv5xU8
OKAL8tnd5vtqdXHpZ+8RwVe6WBV05/XRRl3YZJRyzd/qoievoaqVoYcr5WQZ
4/V6MOvSsPO6q4frXfptXYV6eGbLXEe/rodDyvXVnQF6SCAFt+xL0YNVomwO
v1QP8U4VbdyHejh8WGnl3tt6EBgc1LAm+tiLXlKjFukjPvBT7JNV+gg3rlKY
Pq6PU+Wav2rP6WNJefv0emt9WKu+jtXI1IfRqx29uKsP29l943ve6IMbpcVq
/aCPYHfLAcE+fSjIOp5t0zLAGZIl+Ue4AWSc9978HWKAKeGpRn2OAfpfWGqd
+qqPWutg4acP9XHXUuG7qY4BNntR9TjXiXnFyvssU/WhYtTUPpBEzFv6qPSC
vT5G+3NXGZ7Rx+Q+KVVjO32ce8VeKUzMmd7cpRI6qY8EFY03VR4G2NPnVm9L
MUDih0itm1sM4HU4W6LH0gBra3e2mp03wOPctcuU7hqAYXJM3LfIAHXbmu6Y
aBhCRF3cR4ZrCJtX7VMm/obYHJxSob/bEBX2q5y4BYbgXB1a7dlgiIXkqsld
0YaIGogSqEw2RHDqWGzzCUOoXzrJupJoiM4a2oBJoSFYYhbtzamGsFNMMH6Q
bYjizRN3szRZkE/aqxixmIXnHS5bukRZsOX4XWyis7CY1CQxn8uC27Ub348w
WCiWUE2wYLOw5Pj12mdMFlSsC9dXWrMQ6zeYt9mehUDfzrmHNiyEpga4ynqx
8FjGle2XzMI8yaXZXuEs/G6Tt7UOZQHq78T3bSFwZEMvrNjDwqOMGn50HAun
mtyiHkewwKWF+Fj7spDL8aGMrGBh48HPtzeYsjDyzbdtfDkLv1zyXbIsiHz3
fcl/G1hgPnwXGezPwrJqf6OLbizCx3XP1/mxoO0oeo1+lAX1l8IdbkksNHVI
Xtt+i4VLlvMu8z+zYLT+XCq7iwXVBNWhJmJ/JdVmmlXDwvfV57ZrFrCgY591
OCGPhQL/6Fq/QyxYP9MrD45m4fYGlSMLCX1naJ27q4JYoOlVp4QSemScqnZa
ubPQnUeqOkbknd5dfRBny0KfBm9XF6Fz/zyq8/0iFjrsHri3C7NhtOP98MIe
Fu5G/zPIHmbhXXeEuMBvFkoUxk+7/GOBxPj23ciCjRRFcWENGza2hV4SDdrL
xp+2uuCfW9hIp64+P+PPxk/tV8UWR9joSevy0gpjQ6rtyJW4IGKNOfyjLIKN
mUHFP0b72LC3Gj735AQbnlP0wT0n2eDdqj8wto0N1eeBe8dd2chlSC+66cdG
jXWljBWfjfGnO5J+GLChVX9fSo/DRlNh5KXw/UR8bUVddBqbeA9dKeY4sCHk
e9PzeAwbC5T3nBwg8mtZjNtfotgo3dBD9jzMxvLipsKkTWz0BtyTdmex8dyC
9SeBmNe/Ju/FJSqhr3rIIp6IG8I8A2wIvc1b01/lrmKjVlTR/Qkxv9W+4s2k
FRv/NcQEJxO8aowCo0robFgfDNxis4SNiYpMwWZ3NjI8G58c9GQj+elbu4AQ
NsITviWGEH4UnrgS8ovw56aDXoxBOhs2RQbPyB5sCEy6lsoHsvFrdkm+XTQb
VeM8n7wcNr4sHWsRzWAjKyJI07SMjTXr1TftuseGXPKxX94NbMhY7IobfsnG
yltUw6TvbGTryh99PI8DV9mA0Y2SHCxZ7RZYvYCDWbeB95bCHNi8a1COY3PQ
tz8gzVCVg3zPKUa4CQdyJqH1QTQOfoweDP3QxcYlxy9iyp2EjlL/x4u62TjS
/XE4q4aN38y7mwKfEvzu9rakvWODlXPN17+aDVtvD6/DL9hYd2udAbuf8Gfv
/SOlxGpMf9LMGGVjaiD7URSJg/vWEjfZfWy8LZ7XfHOYjYU37OUaBtkoiNiX
Okjwj2INJSz7QdyH+r8LaGIcWEunCPjLcnD70uFpPYK/z5SsyRUpDr7IJ7j9
W8hBd2Lcs0kmB/0r9XbJ6HNQqHKiK8SQA9aOR3k+Dhy8bq/W27GJg+Sr+7Lf
RHHwuOFl4r8DHOTdtEpJPsPBp2PUud4iDkZl9G/vKefgQO7qdyGCXHS06a7a
Qudixxvm+RUbuUjKf1/6cz0XG8o9R3SXccEuubvOT4WL0ze0hLYSdY2Msg8a
Ulz4B5CXbTTiwk7Caq2VAhc6FuPO6V5ckPZQP/F3cnGY6sH7E8/FoVsrt7NS
uITuQ8OrL3MxZuU0TEniQqLoRovabi5eab2dT9rGhY9ne4OlDxeFA7+3luVy
oXmi7mjKFS7is65274nlYnCAFSFwmwuN58va/13kIndT96DzCS4u6jbuEDjI
hZRCQEVdJRc1o7Tg0xNcRKY9jS7q42I0lbJu+wAXffX3ny9r5OLgNquyAyNc
OFqtEP7xkovvd4Z2yb3iwo1K+f3vLheKzIvSDalcjF+KvOcexcUuZeMXbqFc
TMR8PdcfzsV+h77n0We4+LLVhPQsgwuRoJaTgwSPUDO3xvkEbxVvuCUT/FTU
a295n+XCUu1ZyxjBS/f3C6m6m1y8vHpLcO1TLgT+POwKaeUiznGpY64oD4F7
PySOjnGh0FGzJnuGi+Hsv2F5i3iQEP70ehWhZ6Lj1wqeAg8TX/874K3Pg+J/
Zzbl2vIg7t8lIBDAQ3VFYe6BFB5cow9nsCp5eLnlSHBcLQ+5hR7Hdw3ycCFw
t716KQ9hC6wdnEp4CJL7Gn9gLw8+K1cmknby0LOsxiVtNQ+V8TdGaQ48KHcU
1V0nYmn//K8t6wicD8pnFVk8LDSifsyW5eHWo4hn7lY81J+ibskmePx4XFOe
vIkHpyDfFN4+HhifeR6PNvMww2155bibh1VLTomax/HA4Zy/LpPFg6kkyUBu
Dw91Wmfji0J40Fr8rarFm4cQW6fW6WU83FM6m3eHzsPK8ZW7m3QJPIdZb3FX
HhznpyT0xfCwvixseulawjfHsJt5G3l4/i7Gboc5D4diFlYEEnNeWD2jyETx
8D9ajjcs
"];
ListPlot[data, PlotRange -> ResourceFunction["MinMaxRounded"][data, 5]]
Out[8]=

Possible Issues

An empty list returns {∞,-∞}:

In[9]:=
ResourceFunction["MinMaxRounded"][{}]
Out[9]=

Resource History

License Information