Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Express MeijerG expressions in terms of HypergeometricPFQ
ResourceFunction["MeijerGToHypergeometricPFQ"][expr] converts MeijerG expressions in expr to a form involving HypergeometricPFQ. | |
ResourceFunction["MeijerGToHypergeometricPFQ"][expr,f] wraps f around any HypergeometricPFQ head in the result. |
A Meijer G-function:
In[1]:= |
Out[1]= |
Expand in terms of generalized hypergeometric functions:
In[2]:= |
Out[2]= |
Verify that the two expressions are equivalent:
In[3]:= |
Out[3]= |
A generalized Meijer G-function:
In[4]:= |
Out[4]= |
Generate the hypergeometric representation:
In[5]:= |
Out[5]= |
Use MeijerGReduce to convert a special function to its equivalent MeijerG representation:
In[6]:= |
Out[6]= |
The result after conversion with MeijerGToHypergeometricPFQ does not have HypergeometricPFQ terms due to autoevaluation:
In[7]:= |
Out[7]= |
Wrap the HypergeometricPFQ heads in Inactive to prevent evaluation:
In[8]:= |
Out[8]= |
FunctionExpand always tries to convert to simpler functions whenever possible:
In[9]:= |
Out[9]= |
MeijerGToHypergeometricPFQ performs a less drastic conversion:
In[10]:= |
Out[10]= |
If Inactive is not supplied as the second argument, the resulting HypergeometricPFQ expressions might still autoevaluate:
In[11]:= |
Out[11]= |
MeijerG expressions that autoevaluate cannot be directly converted:
In[12]:= |
Out[12]= |
In[13]:= |
Out[13]= |
Wrap MeijerG in Inactive and use Inactive as the second argument to prevent evaluation:
In[14]:= |
Out[14]= |
Use Activate to see the simpler expression:
In[15]:= |
Out[15]= |
Piecewise results can be returned in some cases:
In[16]:= |
Out[16]= |
Logarithmic cases will not be converted:
In[17]:= |
Out[17]= |
This work is licensed under a Creative Commons Attribution 4.0 International License