Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Convert a mathematical expression into an equivalent expression with head MeijerG
ResourceFunction["MeijerGForm"][f,z] expresses the function f, written in terms of the independent variable z, in terms of MeijerG when possible.  | 
Get the Meijer-G form of a trigonometric function:
| In[1]:= | 
| Out[1]= | 
Activating the result allows the MeijerG to evaluate, giving back the original function:
| In[2]:= | 
| Out[2]= | 
Represent BesselJ in terms of MeijerG:
| In[3]:= | 
| Out[3]= | 
Recover the original function using Activate:
| In[4]:= | 
| Out[4]= | 
Rational functions:
| In[5]:= | 
| Out[5]= | 
| In[6]:= | 
| Out[6]= | 
Algebraic functions:
| In[7]:= | 
| Out[7]= | 
Trigonometric functions:
| In[8]:= | 
| Out[8]= | 
| In[9]:= | 
| Out[9]= | 
Linear combination of trigonometric functions:
| In[10]:= | 
| Out[10]= | 
Inverse trigonometric and hyperbolic functions:
| In[11]:= | 
| Out[11]= | 
| In[12]:= | 
| Out[12]= | 
Airy functions:
| In[13]:= | 
| Out[13]= | 
| In[14]:= | 
| Out[14]= | 
Bessel functions:
| In[15]:= | 
| Out[15]= | 
| In[16]:= | 
| Out[16]= | 
Legendre functions:
| In[17]:= | 
| Out[17]= | ![]()  | 
Hypergeometric functions:
| In[18]:= | 
| Out[18]= | 
Elliptic integrals:
| In[19]:= | 
| Out[19]= | 
| In[20]:= | 
| Out[20]= | 
If a MeijerG representation cannot be found, the function returns unevaluated:
| In[21]:= | 
| Out[21]= | 
Wolfram Language 13.0 (December 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License