Function Repository Resource:

MathieuEllipticSin

Source Notebook

Evaluate the sine-elliptic Mathieu function

Contributed by: S. M. Blinder

ResourceFunction["MathieuEllipticSin"][n, x, q]

gives the nth odd Mathieu function sen(x,q).

Details

Mathematical function, suitable for both symbolic and numerical manipulation.
The Mathieu function sen(x,q) satisfies the equation y′′+(bn(q)-2qcos(2x))y=0 where, for nonnegative integers n, bn(q) is the nth characteristic value for odd Mathieu functions.
The function sen(x,q) is π-periodic for even n, and 2π-periodic for odd n.
For certain special arguments, ResourceFunction["MathieuEllipticSin"] automatically evaluates to exact values.
ResourceFunction["MathieuEllipticSin"] can be evaluated to arbitrary numerical precision.
ResourceFunction["MathieuEllipticSin"] automatically threads over lists.

Examples

Basic Examples (2) 

Evaluate the se1(x,0) function:

In[1]:=
ResourceFunction["MathieuEllipticSin"][1, x, 0]
Out[1]=

Evaluate se2(2,2) numerically:

In[2]:=
ResourceFunction["MathieuEllipticSin"][2, 2, 2] // N
Out[2]=

Applications (1) 

Function plots for q=2:

In[3]:=
(* Evaluate this cell to get the example input *) CloudGet["https://www.wolframcloud.com/obj/05cfa962-b1c6-4941-8c2c-f77364f62f6e"]
Out[3]=

Neat Examples (1) 

Visualize an eigenfunction of the Laplace equation in an ellipse that vanishes at the boundary:

In[4]:=
(* Evaluate this cell to get the example input *) CloudGet["https://www.wolframcloud.com/obj/ac5a5011-564f-4256-ab74-188327565185"]
Out[4]=

Version History

  • 1.0.0 – 28 March 2022

Related Resources

License Information