Function Repository Resource:

MandelbrotMatrix

Source Notebook

Construct a matrix whose eigenvalues lie on the Mandelbrot set boundary

Contributed by: Jan Mangaldan

ResourceFunction["MandelbrotMatrix"][n]

gives the nth Mandelbrot matrix.

Details

The Mandelbrot matrix is a sparse upper Hessenberg matrix whose eigenvalues lie on the boundary of the Mandlebrot set.
ResourceFunction["MandelbrotMatrix"] returns a SparseArray.
ResourceFunction["MandelbrotMatrix"][n] gives a matrix of dimensions (2n+1-1)×(2n+1-1).

Examples

Basic Examples (2) 

A Mandelbrot matrix:

In[1]:=
ResourceFunction["MandelbrotMatrix"][3]
Out[1]=

Plot its eigenvalues in the complex plane:

In[2]:=
ComplexListPlot[Eigenvalues[%]]
Out[2]=

Scope (1) 

Visualize the eigenvalues of a large Mandelbrot matrix:

In[3]:=
ComplexListPlot[
  Eigenvalues[N[ResourceFunction["MandelbrotMatrix"][10]]], Axes -> None, Frame -> True] // Quiet
Out[3]=

Version History

  • 1.0.0 – 30 September 2022

Source Metadata

Related Resources

License Information