Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Build an elliptic function with given periods, zeros and poles
ResourceFunction["MakeEllipticFunction"][z,{p1,p2},{r1,…},{s1,…}] builds an elliptic function of complex argument z with periods p1 and p2, zeros ri and poles si. |
Build an elliptic function over a square lattice, with two zeros and two poles:
In[1]:= | ![]() |
Out[1]= | ![]() |
Plot the real and imaginary parts of the elliptic function over a subset of the reals:
In[2]:= | ![]() |
Out[2]= | ![]() |
Plot the real and imaginary parts of the elliptic function over a subset of the complex plane:
In[3]:= | ![]() |
Out[3]= | ![]() |
Form an elliptic function with a single and a double zero and a triple pole:
In[4]:= | ![]() |
Out[4]= | ![]() |
Plot over the complex plane:
In[5]:= | ![]() |
Out[5]= | ![]() |
Form an elliptic function over the rhomboidal lattice with two triple zeros and one triple pole using the elliptic theta function:
In[6]:= | ![]() |
Out[6]= | ![]() |
Use the Weierstrass sigma function to build the elliptic function:
In[7]:= | ![]() |
Out[7]= | ![]() |
Show both functions in the complex plane:
In[8]:= | ![]() |
Out[8]= | ![]() |
The two functions differ by a constant multiple:
In[9]:= | ![]() |
Out[9]= | ![]() |
In[10]:= | ![]() |
Out[10]= | ![]() |
MakeEllipticFunction is left unevaluated if it is not possible to build an elliptic function from the specified data:
In[11]:= | ![]() |
Out[11]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License