Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Return a lollipop graph composed of a clique and a path graph
ResourceFunction["LollipopGraph"][n,m] gives a lollipop graph composed of a clique of size n and a undirected path graph of size m. |

| In[1]:= |
| Out[1]= | ![]() |
Specify an annotation for vertices:
| In[2]:= |
| Out[2]= | ![]() |
Edges:
| In[3]:= |
| Out[3]= | ![]() |
Highlight the vertex 1:
| In[4]:= |
| Out[4]= | ![]() |
Highlight the edge 23:
| In[5]:= |
| Out[5]= | ![]() |
Highlight the vertices and edges:
| In[6]:= |
| Out[6]= | ![]() |
Use a common base theme:
| In[7]:= |
| Out[7]= | ![]() |
Use a monochrome theme:
| In[8]:= |
| Out[8]= | ![]() |
By default, the size of vertices is computed automatically:
| In[9]:= |
| Out[9]= | ![]() |
Specify the size of all vertices using symbolic vertex size:
| In[10]:= | ![]() |
| Out[10]= | ![]() |
Specify the size for individual vertices:
| In[11]:= |
| Out[11]= | ![]() |
Style all vertices:
| In[12]:= | ![]() |
| Out[12]= | ![]() |
Style individual vertices:
| In[13]:= |
| Out[13]= | ![]() |
Number of vertices of LollipopGraph[{n,m}]is n+m:
| In[14]:= |
| Out[14]= |
| In[15]:= |
| Out[15]= |
Number of edges of LollipopoGraph[{n,m}]is (n(n-1))/2+m:
| In[16]:= |
| Out[16]= |
| In[17]:= |
| Out[17]= |
Wolfram Language 13.0 (December 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License