Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the logarithmic norm of a square matrix
ResourceFunction["LogarithmicNorm"][m,p] gives the logarithmic p‐norm of the matrix m. |
Logarithmic 1-norm of a 3×3 matrix:
| In[1]:= |
| Out[1]= |
Logarithmic ∞-norm of a 3×3 matrix:
| In[2]:= |
| Out[2]= |
Logarithmic 2-norm of a 3×3 matrix:
| In[3]:= |
| Out[3]= |
A 3×3 matrix:
| In[4]:= |
Evaluate the logarithmic norm with exact arithmetic:
| In[5]:= |
| Out[5]= |
Evaluate the logarithmic norm with machine arithmetic:
| In[6]:= |
| Out[6]= |
Evaluate the logarithmic norm with 20digit arbitrary precision arithmetic:
| In[7]:= |
| Out[7]= |
Logarithmic norm of a sparse matrix:
| In[8]:= |
| Out[8]= |
The logarithmic norm can be negative, and is thus not a matrix norm:
| In[9]:= |
| Out[9]= |
The logarithmic 2-norm of m is equal to the largest eigenvalue of
:
| In[10]:= |
| Out[10]= |
| In[11]:= |
| Out[11]= |
This work is licensed under a Creative Commons Attribution 4.0 International License