Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Attempt to simplify a numeric expression containing logarithms using integer relations
ResourceFunction["LogSimplify"][expr] attempts to simplify a numeric expression expr containing multiple Log terms, using integer relations among logarithms. |
Simplify an expression provided by Stephen Wolfram:
In[1]:= | ![]() |
Out[1]= | ![]() |
Verify the identity numerically:
In[2]:= | ![]() |
Out[2]= | ![]() |
Simplify the expression obtained using the divergence theorem to find the mean square cylindrical radius of the tritetrahedron:
In[3]:= | ![]() |
Out[4]= | ![]() |
Verify this identity numerically:
In[5]:= | ![]() |
Out[5]= | ![]() |
The definite integral of a rational function:
In[6]:= | ![]() |
Out[6]= | ![]() |
Simplify this expression:
In[7]:= | ![]() |
Out[7]= | ![]() |
Verify the identity numerically:
In[8]:= | ![]() |
Out[8]= | ![]() |
The function returns unevaluated when given a non-numeric argument:
In[9]:= | ![]() |
Out[9]= | ![]() |
Arguments are evaluated according to the normal Wolfram Language evaluation rules:
In[10]:= | ![]() |
Out[10]= | ![]() |
In[11]:= | ![]() |
Out[11]= | ![]() |
If the evaluated argument contains fewer than two Log terms, the argument is returned unchanged:
In[12]:= | ![]() |
Out[12]= | ![]() |
In[13]:= | ![]() |
Out[13]= | ![]() |
If no relation is found among Log terms, the argument is returned unchanged:
In[14]:= | ![]() |
Out[14]= | ![]() |
Wolfram Language 12.3 (May 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License