Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Attempt to simplify a numeric expression containing logarithms using integer relations
ResourceFunction["LogSimplify"][expr] attempts to simplify a numeric expression expr containing multiple Log terms, using integer relations among logarithms. |
Simplify an expression provided by Stephen Wolfram:
In[1]:= |
Out[1]= |
Verify the identity numerically:
In[2]:= |
Out[2]= |
Simplify the expression obtained using the divergence theorem to find the mean square cylindrical radius of the tritetrahedron:
In[3]:= |
Out[4]= |
Verify this identity numerically:
In[5]:= |
Out[5]= |
The definite integral of a rational function:
In[6]:= |
Out[6]= |
Simplify this expression:
In[7]:= |
Out[7]= |
Verify the identity numerically:
In[8]:= |
Out[8]= |
The function returns unevaluated when given a non-numeric argument:
In[9]:= |
Out[9]= |
Arguments are evaluated according to the normal Wolfram Language evaluation rules:
In[10]:= |
Out[10]= |
In[11]:= |
Out[11]= |
If the evaluated argument contains fewer than two Log terms, the argument is returned unchanged:
In[12]:= |
Out[12]= |
In[13]:= |
Out[13]= |
If no relation is found among Log terms, the argument is returned unchanged:
In[14]:= |
Out[14]= |
Wolfram Language 12.3 (May 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License