Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the Liouville number or its generalization
ResourceFunction["LiouvilleNumber"][] computes the Liouville number to machine precision. | |
ResourceFunction["LiouvilleNumber"][p] computes the Liouville number to precision p. | |
ResourceFunction["LiouvilleNumber"][r,p] computes the Liouville number corresponding to the rational number r to precision p. |
Compute the Liouville number:
In[1]:= | ![]() |
Out[1]= | ![]() |
Compute the Liouville number to 403 digits:
In[2]:= | ![]() |
Out[2]= | ![]() |
Compute the Liouville number corresponding to 14/33 to 1096 digits:
In[3]:= | ![]() |
Out[3]= | ![]() |
Large integers sporadically appear in the continued fraction expansion of the Liouville number:
In[4]:= | ![]() |
Out[4]= | ![]() |
The Liouville number is very nearly equal to the root of a certain sixth-degree polynomial:
In[5]:= | ![]() |
Out[5]= | ![]() |
Plot values of the first few Liouville numbers corresponding to 1/b:
In[6]:= | ![]() |
Out[6]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License