Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Generate interpolating nodes from points on a curve
ResourceFunction["LeeInterpolatingNodes"][{{x1,y1,…},{x2,y2,…},…}] yields centripetal interpolating nodes suitable for use with Interpolation from points assumed to be lying on a space curve. | |
ResourceFunction["LeeInterpolatingNodes"][{{x1,y1,…},{x2,y2,…},…},a] yields Lee's interpolating nodes with parameter a. |
| 0 | uniform parametrization |
| 1/2 | centripetal parametrization |
| 1 | chord length parametrization |
Generate centripetal interpolating nodes from a given set of points:
| In[1]:= |
| Out[1]= |
Use Interpolation to get an interpolating curve:
| In[2]:= |
| Out[2]= |
Plot the curve along with the original points:
| In[3]:= |
| Out[3]= | ![]() |
A set of 3D points:
| In[4]:= |
Generate an interpolating curve with uniform parametrization:
| In[5]:= | ![]() |
| Out[5]= | ![]() |
Generate an interpolating curve with chord length parametrization:
| In[6]:= | ![]() |
| Out[6]= | ![]() |
A set of 3D points:
| In[7]:= |
Generate the corresponding knots and control points for a B-spline curve:
| In[8]:= | ![]() |
| Out[8]= |
Visualize the B-spline curve and the points:
| In[9]:= | ![]() |
| Out[9]= | ![]() |
Demonstrate the effect of varying the parameter for the Lee interpolating nodes:
| In[10]:= | ![]() |
| Out[10]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License