Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Lah number
ResourceFunction["LahL"][n,m] gives the Lah number L(n,m). |
Evaluate some Lah numbers:
In[1]:= | ![]() |
Out[1]= | ![]() |
LahL threads elementwise over lists:
In[2]:= | ![]() |
Out[2]= | ![]() |
Plot Lah numbers on a logarithmic scale:
In[3]:= | ![]() |
Out[3]= | ![]() |
Express Pochhammer as a linear combination of FactorialPower:
In[4]:= | ![]() |
Out[4]= | ![]() |
Express FactorialPower as a linear combination of Pochhammer:
In[5]:= | ![]() |
Out[5]= | ![]() |
Closed form of derivatives of ⅇ1/x:
In[6]:= | ![]() |
Out[6]= | ![]() |
In[7]:= | ![]() |
Out[7]= | ![]() |
Generate values from the generating function:
In[8]:= | ![]() |
Out[8]= | ![]() |
In[9]:= | ![]() |
Out[9]= | ![]() |
Lah numbers can be expressed in terms of Stirling numbers of both kinds:
In[10]:= | ![]() |
Out[10]= | ![]() |
In[11]:= | ![]() |
Out[11]= | ![]() |
Lah numbers are given by a partial Bell polynomial with factorial arguments:
In[12]:= | ![]() |
Out[12]= | ![]() |
In[13]:= | ![]() |
Out[13]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License