Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the solution of the standard Kepler equation
ResourceFunction["KeplerE"][ε,M] gives the principal solution E in the standard Kepler equation M=E-ε sin(E). |
Evaluate numerically:
| In[1]:= |
| Out[1]= |
Plot over a subset of the reals:
| In[2]:= |
| Out[2]= | ![]() |
Simple exact values are generated automatically:
| In[3]:= |
| Out[3]= |
| In[4]:= |
| Out[4]= |
Evaluate to arbitrary precision:
| In[5]:= |
| Out[5]= |
The precision of the output tracks the precision of the input:
| In[6]:= |
| Out[6]= |
KeplerE threads elementwise over lists:
| In[7]:= |
| Out[7]= |
Parity transformation is automatically applied:
| In[8]:= |
| Out[8]= |
Compute the distance from the Sun and true anomaly of Mars on a given date, assuming a Keplerian orbit:
| In[9]:= | ![]() |
| Out[9]= |
KeplerE is the inverse of the function E-ε sin(E):
| In[10]:= |
| Out[10]= |
| In[11]:= |
| Out[11]= |
Visualize the weekly orbital progress of an orbiting body with eccentricity
over a period of one year:
| In[12]:= | ![]() |
| Out[12]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License