Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the solution of the standard Kepler equation
ResourceFunction["KeplerE"][ε,M] gives the principal solution E in the standard Kepler equation M=E-ε sin(E). |
Evaluate numerically:
In[1]:= |
Out[1]= |
Plot over a subset of the reals:
In[2]:= |
Out[2]= |
Simple exact values are generated automatically:
In[3]:= |
Out[3]= |
In[4]:= |
Out[4]= |
Evaluate to arbitrary precision:
In[5]:= |
Out[5]= |
The precision of the output tracks the precision of the input:
In[6]:= |
Out[6]= |
KeplerE threads elementwise over lists:
In[7]:= |
Out[7]= |
Parity transformation is automatically applied:
In[8]:= |
Out[8]= |
Compute the distance from the Sun and true anomaly of Mars on a given date, assuming a Keplerian orbit:
In[9]:= |
Out[9]= |
KeplerE is the inverse of the function E-ε sin(E):
In[10]:= |
Out[10]= |
In[11]:= |
Out[11]= |
Visualize the weekly orbital progress of an orbiting body with eccentricity over a period of one year:
In[12]:= |
Out[12]= |
This work is licensed under a Creative Commons Attribution 4.0 International License