Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Jacobi epsilon function
ResourceFunction["JacobiEpsilon"][u,m] gives the Jacobi epsilon function ε(u|m). |
Evaluate JacobiEpsilon numerically:
In[1]:= |
Out[1]= |
Plot the Jacobi epsilon function over a subset of the reals:
In[2]:= |
Out[2]= |
Series expansion about the origin:
In[3]:= |
Out[3]= |
Evaluate for complex arguments:
In[4]:= |
Out[4]= |
Evaluate to high precision:
In[5]:= |
Out[5]= |
The precision of the output tracks the precision of the input:
In[6]:= |
Out[6]= |
JacobiEpsilon threads elementwise over lists:
In[7]:= |
Out[7]= |
Simple exact values are generated automatically:
In[8]:= |
Out[8]= |
In[9]:= |
Out[9]= |
Parity transformation is automatically applied:
In[10]:= |
Out[10]= |
Plot the Jacobi epsilon function over the complex plane:
In[11]:= |
Out[11]= |
Motion of a charged particle in a linear magnetic field:
In[12]:= |
Check the solution in Newton's equations of motion with Lorentz force:
In[13]:= |
Out[13]= |
Plot particle trajectories for various initial velocities:
In[14]:= |
Out[14]= |
Parametrization of a rotating elastic rod (fixed at the origin):
In[15]:= |
Plot the shape of the deformed rod:
In[16]:= |
Out[16]= |
ε(u|m) is a meromorphic extension of the EllipticE function :
In[17]:= |
Out[17]= |
In[18]:= |
Out[18]= |
Machine precision is not sufficient to obtain the correct result:
In[19]:= |
Out[19]= |
Use arbitrary-precision arithmetic instead:
In[20]:= |
Out[20]= |
This work is licensed under a Creative Commons Attribution 4.0 International License